Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria.

  • Kaori Hayashi‎ et al.
  • Kidney international‎
  • 2015‎

Proteinuria is a central component of chronic kidney disease and an independent risk factor for cardiovascular disease. Kidney podocytes have an essential role as a filtration barrier against proteinuria. Kruppel-like Factor 4 (KLF4) is expressed in podocytes and decreased in glomerular diseases leading to methylation of the nephrin promoter, decreased nephrin expression and proteinuria. Treatment with an angiotensin receptor blocker (ARB) reduced methylation of the nephrin promoter in murine glomeruli of an adriamycin nephropathy model with recovery of KLF4 expression and a decrease in albuminuria. In podocyte-specific KLF4 knockout mice, the effect of ARB on albuminuria and the nephrin promoter methylation was attenuated. In cultured human podocytes, angiotensin II reduced KLF4 expression and caused methylation of the nephrin promoter with decreased nephrin expression. In patients, nephrin promoter methylation was increased in proteinuric kidney diseases with decreased KLF4 and nephrin expression. KLF4 expression in ARB-treated patients was higher in patients with than without ARB treatment. Thus, angiotensin II can modulate epigenetic regulation in podocytes and ARB inhibits these actions in part via KLF4 in proteinuric kidney diseases. This study provides a new concept that renin-angiotensin system blockade can exert therapeutic effects through epigenetic modulation of the kidney gene expression.


Chronic kidney disease reduces muscle mitochondria and exercise endurance and its exacerbation by dietary protein through inactivation of pyruvate dehydrogenase.

  • Masanori Tamaki‎ et al.
  • Kidney international‎
  • 2014‎

Chronic kidney disease impairs physical performance. Here the time course and mechanism of muscle insufficiency in renal failure and the influence of dietary protein were studied using 5/6 nephrectomized C57Bl/6 mice, focusing on muscle mass and mitochondria. A decrease in muscle mitochondria and running distance was found in young (16-20 weeks) 5/6 nephrectomized mice, despite the preservation of muscle volume and power. However, a decrease in muscle volume, associated with a reduction in muscle power, was found in aged (48-52 weeks) 5/6 nephrectomized mice. A high-protein diet feeding from 8 weeks increased muscle volume and power in the mice; but this further decreased running distance. Activation of pyruvate dehydrogenase by dichloroacetate effectively recovered running distance that was decreased by dietary protein. These findings indicate the mechanism of muscle insufficiency in renal failure and suggest that activation of muscle mitochondria would serve as a potential strategy for improving the physical performance of the patients with chronic kidney disease.


Improvement of Physical Decline Through Combined Effects of Muscle Enhancement and Mitochondrial Activation by a Gastric Hormone Ghrelin in Male 5/6Nx CKD Model Mice.

  • Masanori Tamaki‎ et al.
  • Endocrinology‎
  • 2015‎

Because a physical decline correlates with an increased risk of a wide range of disease and morbidity, an improvement of physical performance is expected to bring significant clinical benefits. The primary cause of physical decline in 5/6 nephrectomized (5/6Nx) chronic kidney disease model mice has been regarded as a decrease in muscle mass; however, our recent study showed that a decrease in muscle mitochondria plays a critical role. In the present study, we examined the effects of a gastric hormone ghrelin, which has been reported to promote muscle mitochondrial oxidation, on the physical decline in the chronic kidney disease model mice, focusing on the epigenetic modulations of a mitochondrial activator gene, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Ghrelin treatment improved a decline in exercise endurance of 5/6Nx mice, associated with an increase in both of the muscle mass and mitochondrial amount. The expression level of PGC-1α was decreased in the skeletal muscle of 5/6Nx mice, which was associated with an increase in the methylation ratio of the cytosine residue at 260 base pairs upstream of the initiation point. Conversely, ghrelin treatment de-methylated the cytosine residue and increased the expression of PGC-1α. A representative muscle anabolic factor, IGF-1, did not affect the expression of PGC-1α and muscle mitochondrial amount, although it increased muscle mass. As a result, IGF-1 treatment in 5/6Nx mice did not increase the decreased exercise endurance as effectively as ghrelin treatment did. These findings indicate an advantage of ghrelin treatment for a recovery of physical decline.


Oral adsorbent AST-120 ameliorates gut environment and protects against the progression of renal impairment in CKD rats.

  • Ayumi Yoshifuji‎ et al.
  • Clinical and experimental nephrology‎
  • 2018‎

Oral charcoal adsorbent AST-120 (AST) is reported to ameliorate renal dysfunction by the absorption of toxic substance in the gut. Recent study revealed that, in CKD, gut environment is disturbed including the decrease in tight junctions and Lactobacillus (Lact). In this study, we examined whether AST improves the renal dysfunction through gut environment.


Cerebral capillary blood flow upsurge during REM sleep is mediated by A2a receptors.

  • Chia-Jung Tsai‎ et al.
  • Cell reports‎
  • 2021‎

Sleep is generally viewed as a period of recovery, but how the supply of cerebral blood flow (CBF) changes across sleep/wake states has remained unclear. Here, we directly observe red blood cells (RBCs) within capillaries, where the actual substance exchange between the blood and neurons/glia occurs, by two-photon microscopy. Across multiple cortical areas, average capillary CBF is largely increased during rapid eye movement (REM) sleep, whereas it does not differ between periods of active wakefulness and non-REM sleep. Capillary RBC flow during REM sleep is further elevated following REM sleep deprivation, suggesting that capillary CBF reflects REM sleep pressure. At the molecular level, signaling via adenosine A2a receptors is crucial; in A2a-KO mice, capillary CBF upsurge during REM sleep is dampened, and effects of REM sleep pressure are abolished. These results provide evidence regarding the dynamics of capillary CBF across sleep/wake states and insights to the underlying mechanisms.


Anatomical and electrophysiological development of the hypothalamic orexin neurons from embryos to neonates.

  • Yukino Ogawa‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

The amount, quality, and diurnal pattern of sleep change greatly during development. Developmental changes of sleep/wake architecture are in a close relationship to brain development. The fragmentation of wake episodes is one of the salient features in the neonatal period, which is also observed in mature animals and human individuals lacking neuropeptide orexin/hypocretin signaling. This raises the possibility that developmental changes of lateral hypothalamic orexin neurons are relevant to the development of sleep/wake architecture. However, little information is available on morphological and physiological features of developing orexin neurons. To address the cellular basis for maturation of the sleep/wake regulatory system, we investigated the functional development of orexin neurons in the lateral hypothalamus. The anatomical development as well as the changes in the electrophysiological characteristics of orexin neurons was examined from embryonic to postnatal stages in orexin-EGFP mice. Prepro-orexin promoter activity was detectable at embryonic day (E) 12.0, followed by expression of orexin A after E14.0. The number of orexin neurons and their membrane capacitance reached similar levels to adults by postnatal day (P) 7, while their membrane potentials, firing rates, and action potential waveforms were developed by P21. The hyperpolarizing effect of serotonin, which is a major inhibitory signal for adult orexin neurons, was detected after E18.0 and matured at P1. These results suggest that the expression of orexin peptides precedes the maturation of electrophysiological activity of orexin neurons. The function of orexin neurons gradually matures by 3 weeks after birth, coinciding with maturation of sleep/wake architecture.


Effect of fasudil on Rho-kinase and nephropathy in subtotally nephrectomized spontaneously hypertensive rats.

  • Takeshi Kanda‎ et al.
  • Kidney international‎
  • 2003‎

Although Rho-kinase is reported to play an important role in vascular injury, the contribution of Rho-kinase to the progression of renal injury remains unestablished.


Behavioral factors associated with SARS-CoV-2 infection in Japan.

  • Takeshi Arashiro‎ et al.
  • Influenza and other respiratory viruses‎
  • 2022‎

The relative burden of COVID-19 has been less severe in Japan. One reason for this may be the uniquely strict restrictions imposed upon bars/restaurants. To assess if this approach was appropriately targeting high-risk individuals, we examined behavioral factors associated with SARS-CoV-2 infection in the community.


A novel GABAergic population in the medial vestibular nucleus maintains wakefulness and gates rapid eye movement sleep.

  • Daiki Nakatsuka‎ et al.
  • iScience‎
  • 2024‎

Body rocking can either induce sleep or arousal. That is, the vestibular sense influences sleep-wake states. Neuronal interactions between sleep-wake systems and vestibular systems, however, remain unclear. In this study, we found that GABAergic neurons in the lateral part of the medial vestibular nucleus (LMVN), a primary vestibular afferent projection site, control sleep-wake states. Specific inhibition of LMVN GABAergic neurons revealed that the firing of LMVN GABAergic neurons underlies stable wakefulness and smooth transitions from non-rapid-eye-movement (NREM) sleep to rapid eye movement (REM) sleep and that LMVN GABAergic neurons do not affect body balance control in freely moving conditions. Selective axonal tracing of LMVN GABAergic neurons indicated that LMVN GABAergic neurons send axons not only to areas involved in vestibular and oculomotor functions but also to areas regulating sleep-wake states. Our findings suggest that LMVN GABAergic neurons stabilize wakefulness and gate the entry into REM sleep through the use of vestibular information.


Ghrelin protects against renal damages induced by angiotensin-II via an antioxidative stress mechanism in mice.

  • Keiko Fujimura‎ et al.
  • PloS one‎
  • 2014‎

We explored the renal protective effects by a gut peptide, Ghrelin. Daily peritoneal injection with Ghrelin ameliorated renal damages in continuously angiotensin II (AngII)-infused C57BL/6 mice as assessed by urinary excretion of protein and renal tubular markers. AngII-induced increase in reactive oxygen species (ROS) levels and senescent changes were attenuated by Ghrelin. Ghrelin also inhibited AngII-induced upregulations of transforming growth factor-β (TGF-β) and plasminogen activator inhibitor-1 (PAI-1), ameliorating renal fibrotic changes. These effects were accompanied by concomitant increase in mitochondria uncoupling protein, UCP2 as well as in a key regulator of mitochondria biosynthesis, PGC1α. In renal proximal cell line, HK-2 cells, Ghrelin reduced mitochondria membrane potential and mitochondria-derived ROS. The transfection of UCP2 siRNA abolished the decrease in mitochondria-derived ROS by Ghrelin. Ghrelin ameliorated AngII-induced renal tubular cell senescent changes and AngII-induced TGF-β and PAI-1 expressions. Finally, Ghrelin receptor, growth hormone secretagogue receptor (GHSR)-null mice exhibited an increase in tubular damages, renal ROS levels, renal senescent changes and fibrosis complicated with renal dysfunction. GHSR-null mice harbored elongated mitochondria in the proximal tubules. In conclusion, Ghrelin suppressed AngII-induced renal damages through its UCP2 dependent anti-oxidative stress effect and mitochondria maintenance. Ghrelin/GHSR pathway played an important role in the maintenance of ROS levels in the kidney.


Involvement of AMPA receptor desensitization in short-term synaptic depression at the calyx of Held in developing rats.

  • Maki Koike-Tani‎ et al.
  • The Journal of physiology‎
  • 2008‎

Paired-pulse facilitation (PPF) and depression (PPD) are forms of short-term plasticity that are generally thought to reflect changes in transmitter release probability. However, desensitization of postsynaptic AMPA receptors (AMPARs) significantly contributes to PPD at many glutamatergic synapses. To clarify the involvement of AMPAR desensitization in synaptic PPD, we compared PPD with AMPAR desensitization, induced by paired-pulse glutamate application in patches excised from postsynaptic cells at the calyx of Held synapse of developing rats. We found that AMPAR desensitization contributed significantly to PPD before the onset of hearing (P10-12), but that its contribution became negligible after hearing onset. During postnatal development (P7-21) the recovery of AMPARs from desensitization became faster. Concomitantly, glutamate sensitivity of AMPAR desensitization declined. Single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated a developmental decline of GluR1 expression that correlated with speeding of the recovery of AMPARs from desensitization. Transmitter release probability declined during the second postnatal week (P7-14). Manipulation of the extracellular Ca2+/Mg2+ ratio, to match release probability at P7-8 and P13-15 synapses, revealed that the release probability is also an important factor determining the involvement of AMPAR desensitization in PPD. We conclude that the extent of involvement of AMPAR desensitization in short-term synaptic depression is determined by both pre- and postsynaptic mechanisms.


Generation of kidney tubular organoids from human pluripotent stem cells.

  • Shintaro Yamaguchi‎ et al.
  • Scientific reports‎
  • 2016‎

Recent advances in stem cell research have resulted in methods to generate kidney organoids from human pluripotent stem cells (hPSCs), which contain cells of multiple lineages including nephron epithelial cells. Methods to purify specific types of cells from differentiated hPSCs, however, have not been established well. For bioengineering, cell transplantation, and disease modeling, it would be useful to establish those methods to obtain pure populations of specific types of kidney cells. Here, we report a simple two-step differentiation protocol to generate kidney tubular organoids from hPSCs with direct purification of KSP (kidney specific protein)-positive cells using anti-KSP antibody. We first differentiated hPSCs into mesoderm cells using a glycogen synthase kinase-3β inhibitor for 3 days, then cultured cells in renal epithelial growth medium to induce KSP+ cells. We purified KSP+ cells using flow cytometry with anti-KSP antibody, which exhibited characteristics of all segments of kidney tubular cells and cultured KSP+ cells in 3D Matrigel, which formed tubular organoids in vitro. The formation of tubular organoids by KSP+ cells induced the acquisition of functional kidney tubules. KSP+ cells also allowed for the generation of chimeric kidney cultures in which human cells self-assembled into 3D tubular structures in combination with mouse embryonic kidney cells.


Optogenetic induction of hibernation-like state with modified human Opsin4 in mice.

  • Tohru M Takahashi‎ et al.
  • Cell reports methods‎
  • 2022‎

We recently determined that the excitatory manipulation of Qrfp-expressing neurons in the preoptic area of the hypothalamus (quiescence-inducing neurons [Q neurons]) induced a hibernation-like hypothermic/hypometabolic state (QIH) in mice. To control the QIH with a higher time resolution, we develop an optogenetic method using modified human opsin4 (OPN4; also known as melanopsin), a G protein-coupled-receptor-type blue-light photoreceptor. C-terminally truncated OPN4 (OPN4dC) stably and reproducibly induces QIH for at least 24 h by illumination with low-power light (3 μW, 473 nm laser) with high temporal resolution. The high sensitivity of OPN4dC allows us to transcranially stimulate Q neurons with blue-light-emitting diodes and non-invasively induce the QIH. OPN4dC-mediated QIH recapitulates the kinetics of the physiological changes observed in natural hibernation, revealing that Q neurons concurrently contribute to thermoregulation and cardiovascular function. This optogenetic method may facilitate identification of the neural mechanisms underlying long-term dormancy states such as sleep, daily torpor, and hibernation.


Forward-genetics analysis of sleep in randomly mutagenized mice.

  • Hiromasa Funato‎ et al.
  • Nature‎
  • 2016‎

Sleep is conserved from invertebrates to vertebrates, and is tightly regulated in a homeostatic manner. The molecular and cellular mechanisms that determine the amount of rapid eye movement sleep (REMS) and non-REMS (NREMS) remain unknown. Here we identify two dominant mutations that affect sleep and wakefulness by using an electroencephalogram/electromyogram-based screen of randomly mutagenized mice. A splicing mutation in the Sik3 protein kinase gene causes a profound decrease in total wake time, owing to an increase in inherent sleep need. Sleep deprivation affects phosphorylation of regulatory sites on the kinase, suggesting a role for SIK3 in the homeostatic regulation of sleep amount. Sik3 orthologues also regulate sleep in fruitflies and roundworms. A missense, gain-of-function mutation in the sodium leak channel NALCN reduces the total amount and episode duration of REMS, apparently by increasing the excitability of REMS-inhibiting neurons. Our results substantiate the use of a forward-genetics approach for studying sleep behaviours in mice, and demonstrate the role of SIK3 and NALCN in regulating the amount of NREMS and REMS, respectively.


Obesity-induced kidney injury is attenuated by amelioration of aberrant PHD2 activation in proximal tubules.

  • Koji Futatsugi‎ et al.
  • Scientific reports‎
  • 2016‎

The involvement of tissue ischemia in obesity-induced kidney injury remains to be elucidated. Compared with low fat diet (LFD)-mice, high fat diet (HFD)-fed mice became obese with tubular enlargement, glomerulomegaly and peritubular capillary rarefaction, and exhibited both tubular and glomerular damages. In HFD-fed mice, despite the increase in renal pimonidazole-positive areas, the expressions of the hypoxia-responsive genes such as Prolyl-hydroxylase PHD2, a dominant oxygen sensor, and VEGFA were unchanged indicating impaired hypoxic response. Tamoxifen inducible proximal tubules (PT)-specific Phd2 knockout (Phd2-cKO) mice and their littermate control mice (Control) were created and fed HFD or LFD. Control mice on HFD (Control HFD) exhibited renal damages and renal ischemia with impaired hypoxic response compared with those on LFD. After tamoxifen treatment, HFD-fed knockout mice (Phd2-cKO HFD) had increased peritubular capillaries and the increased expressions of hypoxia responsive genes compared to Control HFD mice. Phd2-cKO HFD also exhibited the mitigation of tubular damages, albuminuria and glomerulomegaly. In human PT cells, the increased expressions of hypoxia-inducible genes in hypoxic condition were attenuated by free fatty acids. Thus, aberrant hypoxic responses due to dysfunction of PHD2 caused both glomerular and tubular damages in HFD-induced obese mice. Phd2-inactivation provides a novel strategy against obesity-induced kidney injury.


Sodium benzoate attenuates 2,8-dihydroxyadenine nephropathy by inhibiting monocyte/macrophage TNF-α expression.

  • Yoichi Oshima‎ et al.
  • Scientific reports‎
  • 2023‎

Sodium benzoate (SB), a known D-amino acid oxidase (DAO) enzyme inhibitor, has an anti-inflammatory effect, although its role in renal damage has not been explored. 2,8-dihydroxyadenine crystal induced chronic kidney disease, in which TNF-α is involved in the pathogenesis, was established by oral adenine administration in C57BL/6JJcl mice (AdCKD) with or without SB to investigate its renal protective effects. SB significantly attenuated AdCKD by decreasing serum creatinine and urea nitrogen levels, and kidney interstitial fibrosis and tubular atrophy scores. The survival of AdCKD mice improved 2.6-fold by SB administration. SB significantly decreased the number of infiltrating macrophages observed in the positive F4/80 immunohistochemistry area and reduced the expression of macrophage markers and inflammatory genes, including TNF-α, in the kidneys of AdCKD. Human THP-1 cells stimulated with either lipopolysaccharide or TNF-α showed increased expression of inflammatory genes, although this was significantly reduced by SB, confirming the anti-inflammatory effects of SB. SB exhibited renal protective effects in AdCKD in DAO enzyme deficient mice, suggesting that anti-inflammatory effect of SB was independent of DAO enzyme activity. Moreover, binding to motif DNA sequence, protein level, and mRNA level of NF-κB RelB were significantly inhibited by SB in AdCKD kidneys and lipopolysaccharide treated THP-1 cells, respectively. We report that anti-inflammatory property of SB is independent of DAO enzymatic activity and is associated with down regulated NF-κB RelB as well as its downstream inflammatory genes such as TNF-α in AdCKD.


NNMT activation can contribute to the development of fatty liver disease by modulating the NAD + metabolism.

  • Motoaki Komatsu‎ et al.
  • Scientific reports‎
  • 2018‎

Nicotinamide N-methyltransferase (NNMT) catalyses the reaction between nicotinamide (NAM) and S-adenosylmethionine to produce 1-methylnicotinamide and S-adenosylhomocysteine. Recently, this enzyme has also been reported to modulate hepatic nutrient metabolism, but its role in the liver has not been fully elucidated. We developed transgenic mice overexpressing NNMT to elucidate its role in hepatic nutrient metabolism. When fed a high fat diet containing NAM, a precursor for nicotinamide adenine dinucleotide (NAD)+, these NNMT-overexpressing mice exhibit fatty liver deterioration following increased expression of the genes mediating fatty acid uptake and decreased very low-density lipoprotein secretion. NNMT overactivation decreased the NAD+ content in the liver and also decreased gene activity related to fatty acid oxidation by inhibiting NAD+-dependent deacetylase Sirt3 function. Moreover, the transgenic mice showed liver fibrosis, with the induction of inflammatory and fibrosis genes. Induced NNMT expression decreased the tissue methylation capacity, thereby reducing methylation of the connective tissue growth factor (CTGF) gene promoter, resulting in increased CTGF expression. These data indicate that NNMT links the NAD+ and methionine metabolic pathways and promotes liver steatosis and fibrosis. Therefore, targeting NNMT may serve as a therapeutic strategy for treating fatty liver and fibrosis.


Structure of cortical network activity across natural wake and sleep states in mice.

  • Kaoru Ohyama‎ et al.
  • PloS one‎
  • 2020‎

Cortical neurons fire intermittently and synchronously during non-rapid eye movement sleep (NREMS), in which active and silent periods are referred to as ON and OFF periods, respectively. Neuronal firing rates during ON periods (NREMS-ON-activity) are similar to those of wakefulness (W-activity), raising the possibility that NREMS-ON neuronal-activity is fragmented W-activity. To test this, we investigated the patterning and organization of cortical spike trains and of spike ensembles in neuronal networks using extracellular recordings in mice. Firing rates of neurons during NREMS-ON and W were similar, but showed enhanced bursting in NREMS with no apparent preference in occurrence, relative to the beginning or end of the on-state. Additionally, there was an overall increase in the randomness of occurrence of sequences comprised of multi-neuron ensembles in NREMS recorded from tetrodes. In association with increased burst firing, somatic calcium transients were increased in NREMS. The increased calcium transients associated with bursting during NREM may activate calcium-dependent, cell-signaling pathways for sleep related cellular processes.


The significance of NAD + metabolites and nicotinamide N-methyltransferase in chronic kidney disease.

  • Rina Takahashi‎ et al.
  • Scientific reports‎
  • 2022‎

Dysregulation of nicotinamide adenine dinucleotide (NAD +) metabolism contributes to the initiation and progression of age-associated diseases, including chronic kidney disease (CKD). Nicotinamide N-methyltransferase (NNMT), a nicotinamide (NAM) metabolizing enzyme, regulates both NAD + and methionine metabolism. Although NNMT is expressed abundantly in the kidney, its role in CKD and renal fibrosis remains unclear. We generated NNMT-deficient mice and a unilateral ureter obstruction (UUO) model and conducted two clinical studies on human CKD to investigate the role of NNMT in CKD and fibrosis. In UUO, renal NNMT expression and the degraded metabolites of NAM increased, while NAD + and NAD + precursors decreased. NNMT deficiency ameliorated renal fibrosis; mechanistically, it (1) increased the DNA methylation of connective tissue growth factor (CTGF), and (2) improved renal inflammation by increasing renal NAD + and Sirt1 and decreasing NF-κB acetylation. In humans, along with CKD progression, a trend toward a decrease in serum NAD + precursors was observed, while the final NAD + metabolites were accumulated, and the level of eGFR was an independent variable for serum NAM. In addition, NNMT was highly expressed in fibrotic areas of human kidney tissues. In conclusion, increased renal NNMT expression induces NAD + and methionine metabolism perturbation and contributes to renal fibrosis.


Antineutrophil cytoplasmic antibody-associated vasculitis predominantly manifesting tubulointerstitial nephritis: A case report.

  • Ken Nishioka‎ et al.
  • SAGE open medical case reports‎
  • 2023‎

The common histopathology of antineutrophil cytoplasmic antibody-associated vasculitis comprises pauci-immune crescentic glomerulonephritis with concomitant tubulointerstitial nephritis. Tubulointerstitial nephritis in the absence of glomerular involvement in patients with antineutrophil cytoplasmic antibody-associated vasculitis is uncommon. We report a case of antineutrophil cytoplasmic antibody-associated vasculitis-associated acute kidney injury manifesting as tubulointerstitial nephritis without glomerulonephritis. A 75-year-old woman with fever, cough, and myalgia developed kidney dysfunction with inflammatory reactions and tubular-type proteinuria, without glomerular hematuria. A kidney biopsy revealed tubulointerstitial nephritis with arteritis. We ruled out important underlying etiologies of tubulointerstitial nephritis, including infection, drug reactions, and autoimmune diseases. Since chest high-resolution computed tomography demonstrated mild interstitial pneumonia in bilateral lower lung fields, myeloperoxidase antineutrophil cytoplasmic antibody was measured and found to be positive. Therefore, we diagnosed the patient with antineutrophil cytoplasmic antibody-associated vasculitis-associated tubulointerstitial nephritis but not glomerulonephritis, and interstitial pneumonia. The patient's kidney function and symptoms markedly improved with prednisolone treatment. Clinicians should maintain high-level vigilance for antineutrophil cytoplasmic antibody-associated vasculitis as a possible underlying component of tubulointerstitial nephritis, particularly when kidney function deteriorates with tubulointerstitial injuries without glomerular features.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: