Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

The increased ratio of 11β-hydroxysteroid dehydrogenase type 1 versus 11β-hydroxysteroid dehydrogenase type 2 in chronic periodontitis irrespective of obesity.

  • Takaya Nakata‎ et al.
  • SpringerPlus‎
  • 2016‎

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive cortisone to active cortisol, has been reported to play an important role in metabolic diseases as well as chronic inflammatory diseases. The involvement of 11β-HSD1 in chronic periodontitis was investigated in the present study. The relationship between the levels of 11β-HSD1, chronic periodontitis, and body mass index (BMI) was analyzed. The expression of 11β-HSD1 mRNA was significantly higher in the chronic periodontitis group than in the control group. Since the expression of 11β-HSD2, which converts active cortisol to inactive cortisone, was slightly lower in the chronic periodontitis group than in the controls, the ratio of 11β-HSD1 versus 11β-HSD2 was significantly higher in the chronic periodontitis group than in the controls. A correlation was not observed between BMI and the level of 11β-HSD1 or between BMI and the ratio of 11β-HSD1 versus 11β-HSD2. These results suggested that an increase in the ratio of 11β-HSD1 versus 11β-HSD2 was associated with chronic periodontitis irrespective of obesity.


Catecholamines Facilitate Fuel Expenditure and Protect Against Obesity via a Novel Network of the Gut-Brain Axis in Transcription Factor Skn-1-deficient Mice.

  • Shota Ushiama‎ et al.
  • EBioMedicine‎
  • 2016‎

Taste signals and nutrient stimuli sensed by the gastrointestinal tract are transmitted to the brain to regulate feeding behavior and energy homeostasis. This system is referred to as the gut-brain axis. Here we show that both brush cells and type II taste cells are eliminated in the gastrointestinal tract of transcription factor Skn-1 knockout (KO) mice. Despite unaltered food intake, Skn-1 KO mice have reduced body weight with lower body fat due to increased energy expenditure. In this model, 24-h urinary excretion of catecholamines was significantly elevated, accompanied by increased fatty acid β-oxidation and fuel dissipation in skeletal muscle and impaired insulin secretion driven by glucose. These results suggest the existence of brain-mediated energy homeostatic pathways originating from brush cells and type II taste cells in the gastrointestinal tract and ending in peripheral tissues, including the adrenal glands. The discovery of food-derived factors that regulate these cells may open new avenues the treatment of obesity and diabetes.


Febuxostat, a novel xanthine oxidoreductase inhibitor, improves hypertension and endothelial dysfunction in spontaneously hypertensive rats.

  • Takashi Shirakura‎ et al.
  • Naunyn-Schmiedeberg's archives of pharmacology‎
  • 2016‎

Xanthine oxidase (XO) is an enzyme responsible for the production of uric acid. XO produces considerable amount of oxidative stress throughout the body. To date, however, its pathophysiologic role in hypertension and endothelial dysfunction still remains controversial. To explore the possible involvement of XO-derived oxidative stress in the pathophysiology of vascular dysfunction, by use of a selective XO inhibitor, febuxostat, we investigated the impact of pharmacological inhibition of XO on hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats (SHRs). Sixteen-week-old SHR and normotensive Wistar-Kyoto (WKY) rats were treated with tap water (control) or water containing febuxostat (3 mg/kg/day) for 6 weeks. Systolic blood pressure (SBP) in febuxostat-treated SHR (220 ± 3 mmHg) was significantly (P < 0.05) decreased compared with the control SHR (236 ± 4 mmHg) while SBP in febuxostat-treated WKY was constant. Acetylcholine-induced endothelium-dependent relaxation in aortas from febuxostat-treated SHR was significantly (P < 0.05) improved compared with the control SHR, whereas relaxation in response to sodium nitroprusside was not changed. Vascular XO activity and tissue nitrotyrosine level, a representative indicator of local oxidative stress, were considerably elevated in the control SHR compared with the control WKY, and this increment was abolished by febuxostat. Our results suggest that exaggerated XO activity and resultant increase in oxidative stress in this experimental model contribute to the hypertension and endothelial dysfunction, thereby supporting a notion that pharmacological inhibition of XO is valuable not only for hyperuricemia but also for treating hypertension and related endothelial dysfunction in human clinics.


γ-Oryzanol protects pancreatic β-cells against endoplasmic reticulum stress in male mice.

  • Chisayo Kozuka‎ et al.
  • Endocrinology‎
  • 2015‎

Endoplasmic reticulum (ER) stress is profoundly involved in dysfunction of β-cells under high-fat diet and hyperglycemia. Our recent study in mice showed that γ-oryzanol, a unique component of brown rice, acts as a chemical chaperone in the hypothalamus and improves feeding behavior and diet-induced dysmetabolism. However, the entire mechanism whereby γ-oryzanol improves glucose metabolism throughout the body still remains unclear. In this context, we tested whether γ-oryzanol reduces ER stress and improves function and survival of pancreatic β-cells using murine β-cell line MIN6. In MIN6 cells with augmented ER stress by tunicamycin, γ-oryzanol decreased exaggerated expression of ER stress-related genes and phosphorylation of eukaryotic initiation factor-2α, resulting in restoration of glucose-stimulated insulin secretion and prevention of apoptosis. In islets from high-fat diet-fed diabetic mice, oral administration of γ-oryzanol improved glucose-stimulated insulin secretion on following reduction of exaggerated ER stress and apoptosis. Furthermore, we examined the impact of γ-oryzanol on low-dose streptozotocin-induced diabetic mice, where exaggerated ER stress and resultant apoptosis in β-cells were observed. Also in this model, γ-oryzanol attenuated mRNA level of genes involved in ER stress and apoptotic signaling in islets, leading to amelioration of glucose dysmetabolism. Taken together, our findings demonstrate that γ-oryzanol directly ameliorates ER stress-induced β-cell dysfunction and subsequent apoptosis, highlighting usefulness of γ-oryzanol for the treatment of diabetes mellitus.


Role of the α2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells.

  • Shiki Okamoto‎ et al.
  • Metabolism: clinical and experimental‎
  • 2019‎

AMP-activated protein kinase (AMPK), a heterotrimer with α1 or α2 catalytic subunits, acts as an energy sensor and regulates cellular homeostasis. Whereas AMPKα1 is necessary for myogenesis in skeletal muscle, the role of AMPKα2 in myogenic differentiation and energy metabolism-related gene expressions has remained unclear. We here examined the specific roles of AMPKα1 and AMPKα2 in the myogenic differentiation and mitochondria and energy metabolism-related gene expressions in C2C12 cells.


Gamma-Aminobutyric Acid Signaling in Brown Adipose Tissue Promotes Systemic Metabolic Derangement in Obesity.

  • Ryutaro Ikegami‎ et al.
  • Cell reports‎
  • 2018‎

Brown adipose tissue (BAT) is a metabolically active organ that contributes to the maintenance of systemic metabolism. The sympathetic nervous system plays important roles in the homeostasis of BAT and promotes its browning and activation. However, the role of other neurotransmitters in BAT homeostasis remains largely unknown. Our metabolomic analyses reveal that gamma-aminobutyric acid (GABA) levels are increased in the interscapular BAT of mice with dietary obesity. We also found a significant increase in GABA-type B receptor subunit 1 (GABA-BR1) in the cell membranes of brown adipocytes of dietary obese mice. When administered to obese mice, GABA induces BAT dysfunction together with systemic metabolic disorder. Conversely, the genetic inactivation or inhibition of GABA-BR1 leads to the re-browning of BAT under conditions of metabolic stress and ameliorated systemic glucose intolerance. These results indicate that the constitutive activation of GABA/GABA-BR1 signaling in obesity promotes BAT dysfunction and systemic metabolic derangement.


Telmisartan ameliorates insulin sensitivity by activating the AMPK/SIRT1 pathway in skeletal muscle of obese db/db mice.

  • Asuka Shiota‎ et al.
  • Cardiovascular diabetology‎
  • 2012‎

Telmisartan is a well-established angiotensin II type 1 receptor blocker that improves insulin sensitivity in animal models of obesity and insulin resistance, as well as in humans. Telmisartan has been reported to function as a partial agonist of the peroxisome proliferator-activated receptor (PPAR) γ, which is also targeted by the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase (SIRT1). Here, we investigated the pathways through which telmisartan acts on skeletal muscle, in vitro as well as in vivo.


Neurosecretory protein GL stimulates food intake, de novo lipogenesis, and onset of obesity.

  • Eiko Iwakoshi-Ukena‎ et al.
  • eLife‎
  • 2017‎

Mechanisms underlying the central regulation of food intake and fat accumulation are not fully understood. We found that neurosecretory protein GL (NPGL), a newly-identified neuropeptide, increased food intake and white adipose tissue (WAT) in rats. NPGL-precursor gene overexpression in the hypothalamus caused increases in food intake, WAT, body mass, and circulating insulin when fed a high calorie diet. Intracerebroventricular administration of NPGL induced de novo lipogenesis in WAT, increased insulin, and it selectively induced carbohydrate intake. Neutralizing antibody administration decreased the size of lipid droplets in WAT. Npgl mRNA expression was upregulated by fasting and low insulin levels. Additionally, NPGL-producing cells were responsive to insulin. These results point to NPGL as a novel neuronal regulator that drives food intake and fat deposition through de novo lipogenesis and acts to maintain steady-state fat level in concert with insulin. Dysregulation of NPGL may be a root cause of obesity.


PDK1-Foxo1 in agouti-related peptide neurons regulates energy homeostasis by modulating food intake and energy expenditure.

  • Yongheng Cao‎ et al.
  • PloS one‎
  • 2011‎

Insulin and leptin intracellular signaling pathways converge and act synergistically on the hypothalamic phosphatidylinositol-3-OH kinase/3-phosphoinositide-dependent protein kinase 1 (PDK1). However, little is known about whether PDK1 in agouti-related peptide (AGRP) neurons contributes to energy homeostasis. We generated AGRP neuron-specific PDK1 knockout (AGRPPdk1(-/-)) mice and mice with selective expression of transactivation-defective Foxo1 (Δ256Foxo1(AGRP)Pdk1(-/-)). The AGRPPdk1(-/-) mice showed reductions in food intake, body length, and body weight. The Δ256Foxo1(AGRP)Pdk1(-/-) mice showed increased body weight, food intake, and reduced locomotor activity. After four weeks of calorie-restricted feeding, oxygen consumption and locomotor activity were elevated in AGRPPdk1(-/-) mice and reduced in Δ256Foxo1(AGRP)Pdk1(-/-) mice. In vitro, ghrelin-induced changes in [Ca(2+)](i) and inhibition of ghrelin by leptin were significantly attenuated in AGRPPdk1(-/-) neurons compared to control neurons. However, ghrelin-induced [Ca(2+)](i) changes and leptin inhibition were restored in Δ256Foxo1(AGRP)Pdk1(-/-) mice. These results suggested that PDK1 and Foxo1 signaling pathways play important roles in the control of energy homeostasis through AGRP-independent mechanisms.


Notch/Rbp-j signaling prevents premature endocrine and ductal cell differentiation in the pancreas.

  • Junji Fujikura‎ et al.
  • Cell metabolism‎
  • 2006‎

To investigate the precise role of Notch/Rbp-j signaling in the pancreas, we inactivated Rbp-j by crossing Rbp-j floxed mice with Pdx.cre or Rip.cre transgenic mice. The loss of Rbp-j at the initial stage of pancreatic development induced accelerated alpha and PP cell differentiation and a concomitant decrease in the number of Neurogenin3 (Ngn3)-positive cells at E11.5. Then at E15, elongated tubular structures expressing ductal cell markers were evident; however, differentiation of acinar and all types of endocrine cells were reduced. During later embryonic stages, compensatory acinar cell differentiation was observed. The resultant mice exhibited insulin-deficient diabetes with both endocrine and exocrine pancreatic hypoplasia. In contrast, the loss of Rbp-j specifically in beta cells did not affect beta cell number and function. Thus, our analyses indicate that Notch/Rbp-j signaling prevents premature differentiation of pancreatic progenitor cells into endocrine and ductal cells during early development of the pancreas.


CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment.

  • Kosuke Tanegashima‎ et al.
  • PloS one‎
  • 2010‎

CXCL14 is a chemoattractant for macrophages and immature dendritic cells. We recently reported that CXCL14-deficient (CXCL14(-/-)) female mice in the mixed background are protected from obesity-induced hyperglycemia and insulin resistance. The decreased macrophage infiltration into visceral adipose tissues and the increased insulin sensitivity of skeletal muscle contributed to these phenotypes.


High-fat diet impairs the effects of a single bout of endurance exercise on glucose transport and insulin sensitivity in rat skeletal muscle.

  • Satsuki Tanaka‎ et al.
  • Metabolism: clinical and experimental‎
  • 2007‎

A single bout of exercise increases the rate of muscle glucose transport (GT) by both insulin-independent and insulin-dependent mechanisms. The purpose of this study was to determine whether high-fat diet (HFD) feeding interferes with the metabolic activation induced by moderate-intensity endurance exercise. Rats were fed an HFD or control diet (CD) for 4 weeks and then exercised on a treadmill for 1 hour (19 m/min, 15% incline). Insulin-independent GT was markedly higher in soleus muscle dissected immediately after exercise than in muscle dissected from sedentary rats in both dietary groups, but insulin-independent GT was 25% lower in HFD-fed than in CD-fed rats. Insulin-dependent GT in the presence of submaximally effective concentration of insulin (0.9 nmol/L) was also higher in both dietary groups in muscle dissected 2 hours after exercise, but was 25% lower in HFD-fed than in CD-fed rats. Exercise-induced activation of 5'adenosine monophosphate-activated protein kinase, a signaling intermediary leading to insulin-independent GT and regulating insulin sensitivity, was correspondingly blunted in the HFD group. High-fat diet did not affect glucose transporter 4 content or insulin-stimulated Akt phosphorylation. Our findings provide evidence that an HFD impairs the effects of short-term endurance exercise on glucose metabolism and that exercise does not fully compensate for HFD-induced insulin resistance in skeletal muscle. Although the underlying mechanism is unclear, reduced 5'adenosine monophosphate-activated protein kinase activation during exercise may play a role.


Induction of glucose uptake in skeletal muscle by central leptin is mediated by muscle β2-adrenergic receptor but not by AMPK.

  • Tetsuya Shiuchi‎ et al.
  • Scientific reports‎
  • 2017‎

Leptin increases glucose uptake and fatty acid oxidation (FAO) in red-type skeletal muscle. However, the mechanism remains unknown. We have investigated the role of β2-adrenergic receptor (AR), the major β-AR isoform in skeletal muscle, and AMPK in leptin-induced muscle glucose uptake of mice. Leptin injection into the ventromedial hypothalamus (VMH) increased 2-deoxy-D-glucose (2DG) uptake in red-type skeletal muscle in wild-type (WT) mice accompanied with increased phosphorylation of the insulin receptor (IR) and Akt as well as of norepinephrine (NE) turnover in the muscle. Leptin-induced 2DG uptake was not observed in β-AR-deficient (β-less) mice despite that AMPK phosphorylation was increased in the muscle. Forced expression of β2-AR in the unilateral hind limb of β-less mice restored leptin-induced glucose uptake and enhancement of insulin signalling in red-type skeletal muscle. Leptin increased 2DG uptake and enhanced insulin signalling in red-type skeletal muscle of mice expressing a dominant negative form of AMPK (DN-AMPK) in skeletal muscle. Thus, leptin increases glucose uptake and enhances insulin signalling in red-type skeletal muscle via activation of sympathetic nerves and β2-AR in muscle and in a manner independent of muscle AMPK.


The expression of 11β-hydroxysteroid dehydrogenase type 1 is increased in experimental periodontitis in rats.

  • Takaya Nakata‎ et al.
  • BMC oral health‎
  • 2016‎

The involvement of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoids into active glucocorticoids intracellularly, in metabolic diseases and chronic inflammatory diseases has been elucidated. We recently reported that an increase in 11β-HSD1 expression was associated with chronic periodontitis in humans irrespective of obesity. To further clarify the role of 11β-HSD1 in chronic periodontitis, the expression of 11β-HSD1 was investigated in experimental periodontitis model in rats.


Phosphorylated STAT3 expression predicts better prognosis in smoldering type of adult T-cell leukemia/lymphoma.

  • Kazuho Morichika‎ et al.
  • Cancer science‎
  • 2019‎

Adult T-cell leukemia/lymphoma (ATLL) is a mature T-cell neoplasm, and is divided into 2 indolent (smoldering and chronic) and 2 aggressive (acute and lymphoma) clinical subtypes. Based on previous integrated molecular analyses suggesting the importance of the JAK-STAT pathway in ATLL, we attempted to clarify the clinicopathological significance of this pathway. Clinical and morphological findings were reviewed in 116 cases with ATLL. The nuclear localizations of phosphorylated STAT3 (pSTAT3), pSTAT5, and pSTAT6 were analyzed by immunohistochemistry. Targeted sequencing was undertaken on the portion of STAT3 encoding the Src homology 2 domain. Expression of pSTAT3 was observed in 43% (50/116) of ATLL cases, whereas pSTAT5 and pSTAT6 were largely undetected. Cases with the lymphoma type showed significantly less frequent pSTAT3 expression (8/45, 18%) than those with the other subtypes (41/66, 62%; P < .001). STAT3 mutations were detected in 36% (10/28) and 19% (12/64) of cases with the smoldering and aggressive types of ATLL, respectively. The correlation between STAT3 mutation and pSTAT3 expression was not significant (P = .07). Both univariate and multivariate analysis revealed that pSTAT3 expression was significantly associated with better overall survival and progression-free survival in the smoldering type of ATLL, whereas STAT3 mutation was not related to a line of clinical outcome. Collectively, our data show that only the lymphoma type showed a low prevalence of tumor cells positive for pSTAT3 expression, and raises the possibility that pSTAT3 expression is a novel biomarker to predict better prognosis in the smoldering type of ATLL.


Leptin receptor signaling is required for high-fat diet-induced atrophic gastritis in mice.

  • Kyoko Inagaki-Ohara‎ et al.
  • Nutrition & metabolism‎
  • 2016‎

Obesity increases the risk for malignancies in various tissues including the stomach. Atrophic gastritis with precancerous lesions is an obesity-associated disease; however, the mechanisms that underlie the development of obesity-associated atrophic gastritis are unknown. Leptin is a hormone derived from stomach as well as adipose tissue and gastric leptin is involved in the development of gastric cancer. The aim of the current study is to investigate the involvement of leptin receptor signaling in the development of atrophic gastritis during diet-induced obesity.


Variations in the FTO gene are associated with severe obesity in the Japanese.

  • Kikuko Hotta‎ et al.
  • Journal of human genetics‎
  • 2008‎

Variations in the fat-mass and obesity-associated gene (FTO) are associated with the obesity phenotype in many Caucasian populations. This association with the obesity phenotype is not clear in the Japanese. To investigate the relationship between the FTO gene and obesity in the Japanese, we genotyped single nucleotide polymorphisms (SNPs) in the FTO genes from severely obese subjects [n = 927, body mass index (BMI) > or = 30 kg/m2] and normal-weight control subjects (n = 1,527, BMI < 25 kg/m2). A case-control association analysis revealed that 15 SNPs, including rs9939609 and rs1121980, in a linkage disequilibrium (LD) block of approximately 50 kb demonstrated significant associations with obesity; rs1558902 was most significantly associated with obesity. P value in additive mode was 0.0000041, and odds ratio (OR) adjusted for age and gender was 1.41 [95% confidential interval (CI) = 1.22-1.62]. Obesity-associated phenotypes, which include the level of plasma glucose, hemoglobin A1c, total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and blood pressure were not associated with the rs1558902 genotype. Thus, the SNPs in the FTO gene were found to be associated with obesity, i.e., severe obesity, in the Japanese.


Walking Speed is the Sole Determinant Criterion of Sarcopenia of Mild Cognitive Impairment in Japanese Elderly Patients with Type 2 Diabetes Mellitus.

  • Noritaka Machii‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

Diabetes mellitus is a risk factor for mild cognitive impairment (MCI) and dementia. However, how the clinical characteristics of MCI patients with type 2 diabetes mellitus are linked to sarcopenia and/or its criteria remain to be elucidated. Japanese patients with type 2 diabetes mellitus were categorized into the MCI group for MoCA-J (the Japanese version of the Montreal cognitive assessment) score <26, and into the non-MCI group for MoCA-J ≥26. Sarcopenia was defined by a low skeletal mass index along with low muscle strength (handgrip strength) or low physical performance (walking speed <1.0 m/s). Univariate and multivariate-adjusted odds ratio models were used to determine the independent contributors for MoCA-J <26. Among 438 participants, 221 (50.5%) and 217 (49.5%) comprised the non-MCI and MCI groups, respectively. In the MCI group, age (61 ± 12 vs. 71 ± 10 years, p < 0.01) and duration of diabetes mellitus (14 ± 9 vs. 17 ± 9 years, p < 0.01) were higher than those in the non-MCI group. Patients in the MCI group exhibited lower hand grip strength, walking speed, and skeletal mass index, but higher prevalence of sarcopenia. Only walking speed (rather than muscle loss or muscle weakness) was found to be an independent determinant of MCI after adjusting for multiple factors, such as age, gender, body mass index (BMI), duration of diabetes mellitus, hypertension, dyslipidemia, smoking, drinking, estimated glomerular filtration rate (eGFR), HbA1c, and history of coronary heart diseases and stroke. In subgroup analysis, a group consisting of male patients aged ≥65 years, with BMI <25, showed a significant OR for walking speed. This study showed that slow walking speed is a sole determinant criterion of sarcopenia of MCI in patients with type 2 diabetes mellitus. It was suggested that walking speed is an important factor in the prediction and prevention of MCI development in patients with diabetes mellitus.


Factors Associated with Risk of Diabetic Complications in Novel Cluster-Based Diabetes Subgroups: A Japanese Retrospective Cohort Study.

  • Hayato Tanabe‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

Diabetes is a complex and heterogeneous disease, making the prediction of the risks of diabetic complications challenging. Novel adult-onset diabetes subgroups have been studied using cluster analysis, but its application in East Asians remains unclear. We conducted a retrospective cohort study to elucidate the clinical utility of cluster-based subgroup analysis in the Japanese population. Cluster analysis based on anti-glutamate decarboxylase antibody (GAD antibody) levels, age at diagnosis, body mass index (BMI), hemoglobin A1c (A1c), and homeostatic model assessment 2 estimates of β-cell function and insulin resistance was performed in 1520 diabetic patients. The risk of developing diabetic complications was analyzed using Kaplan-Meier analysis and the Cox proportional hazards model. By cluster analysis, we identified five distinct subgroups of adult-onset diabetes in the Japanese population. The risk of diabetic complications varied greatly among the clusters. Patients with severe autoimmune diabetes or severe insulin deficiency diabetes were at an increased risk of diabetic retinopathy, and those with severe insulin resistant diabetes (SIRD) had the highest risk of developing diabetic kidney disease (DKD). After adjusting for uncorrectable and correctable risk factors, SIRD was found to be an independent risk factor for DKD. In conclusion, we identified five subgroups of adult-onset diabetes and the risk factors for diabetic complications in the Japanese population. This new classification system can be effective in predicting the risk of diabetic complications and for providing optimal treatment.


Brown adipose tissue dysfunction promotes heart failure via a trimethylamine N-oxide-dependent mechanism.

  • Yohko Yoshida‎ et al.
  • Scientific reports‎
  • 2022‎

Low body temperature predicts a poor outcome in patients with heart failure, but the underlying pathological mechanisms and implications are largely unknown. Brown adipose tissue (BAT) was initially characterised as a thermogenic organ, and recent studies have suggested it plays a crucial role in maintaining systemic metabolic health. While these reports suggest a potential link between BAT and heart failure, the potential role of BAT dysfunction in heart failure has not been investigated. Here, we demonstrate that alteration of BAT function contributes to development of heart failure through disorientation in choline metabolism. Thoracic aortic constriction (TAC) or myocardial infarction (MI) reduced the thermogenic capacity of BAT in mice, leading to significant reduction of body temperature with cold exposure. BAT became hypoxic with TAC or MI, and hypoxic stress induced apoptosis of brown adipocytes. Enhancement of BAT function improved thermogenesis and cardiac function in TAC mice. Conversely, systolic function was impaired in a mouse model of genetic BAT dysfunction, in association with a low survival rate after TAC. Metabolomic analysis showed that reduced BAT thermogenesis was associated with elevation of plasma trimethylamine N-oxide (TMAO) levels. Administration of TMAO to mice led to significant reduction of phosphocreatine and ATP levels in cardiac tissue via suppression of mitochondrial complex IV activity. Genetic or pharmacological inhibition of flavin-containing monooxygenase reduced the plasma TMAO level in mice, and improved cardiac dysfunction in animals with left ventricular pressure overload. In patients with dilated cardiomyopathy, body temperature was low along with elevation of plasma choline and TMAO levels. These results suggest that maintenance of BAT homeostasis and reducing TMAO production could be potential next-generation therapies for heart failure.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: