Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Intracranial mast cells contribute to the control of social behavior in male mice.

  • Daisuke Tanioka‎ et al.
  • Behavioural brain research‎
  • 2021‎

Mast cells (MCs) exist intracranially and have been reported to affect higher brain functions in rodents. However, the role of MCs in the regulation of emotionality and social behavior is unclear. In the present study, using male mice, we examined the relationship between MCs and social behavior and investigated the underlying mechanisms. Wild-type male mice intraventricularly injected with a degranulator of MCs exhibited a marked increase in a three-chamber sociability test. In addition, removal of MCs in Mast cell-specific Toxin Receptor-mediated Conditional cell Knock out (Mas-TRECK) male mice showed reduced social preference levels in a three-chamber sociability test without other behavioral changes, such as anxiety-like and depression-like behavior. Mas-TRECK male mice also had reduced serotonin content and serotonin receptor expression and increased oxytocin receptor expression in the brain. These results suggested that MCs may contribute to the regulation of social behavior in male mice. This effect may be partially mediated by serotonin derived from MCs in the brain.


Centrally administered adrenomedullin 5 activates oxytocin-secreting neurons in the hypothalamus and elevates plasma oxytocin level in rats.

  • Hiroki Otsubo‎ et al.
  • The Journal of endocrinology‎
  • 2009‎

We examined the effects of i.c.v. administration of adrenomedullin 5 (AM5) on the brain of conscious rats. We used porcine AM5 in the present study because rat AM5 has not been detected. We observed Fos-like immunoreactivity (LI) in the hypothalamus and brainstem of conscious rats after i.c.v. administration of AM5 (2 nmol/rat). Fos-LI, measured at 90 min post-AM5 injection, was observed in various brain areas, including the supraoptic (SON) and the paraventricular nuclei (PVN). Dual immunostaining for Fos/oxytocin (OXT) and Fos/arginine vasopressin (AVP) revealed that OXT-LI neurones predominantly colocalized Fos-LI compared with AVP-LI neurones in the SON and the PVN. Plasma OXT levels were significantly increased 5 min after i.c.v. administration of AM5 (1 nmol/rat) compared with vehicle and remained elevated in samples taken at 15 and 30 min without changes in plasma AVP levels at any time. In situ hybridization histochemistry showed that i.c.v. administration of AM5 (0.2, 1 and 2 nmol/rat) caused a marked induction of the expression of the c-fos gene in the SON and the PVN. This induction was significantly but not completely reduced by pretreatment with both the calcitonin gene-related peptide (CGRP) antagonist CGRP-(8-37; 3 nmol/rat) and the AM receptor antagonist AM-(22-52; 27 nmol/rat). Although porcine AM5 has not been detected yet in the brain, these results suggest that centrally administered porcine AM5 may activate OXT-secreting neurosecretory cells in the hypothalamus partly through AM/CGRP receptors and elicit secretion of OXT into the systemic circulation in conscious rats.


Maternal dietary restriction alters offspring's sleep homeostasis.

  • Noriyuki Shimizu‎ et al.
  • PloS one‎
  • 2013‎

Nutritional state in the gestation period influences fetal growth and development. We hypothesized that undernutrition during gestation would affect offspring sleep architecture and/or homeostasis. Pregnant female mice were assigned to either control (fed ad libitum; AD) or 50% dietary restriction (DR) groups from gestation day 12 to parturition. After parturition, dams were fed AD chow. After weaning, the pups were also fed AD into adulthood. At adulthood (aged 8-9 weeks), we carried out sleep recordings. Although offspring mice displayed a significantly reduced body weight at birth, their weights recovered three days after birth. Enhancement of electroencephalogram (EEG) slow wave activity (SWA) during non-rapid eye movement (NREM) sleep was observed in the DR mice over a 24-hour period without changing the diurnal pattern or amounts of wake, NREM, or rapid eye movement (REM) sleep. In addition, DR mice also displayed an enhancement of EEG-SWA rebound after a 6-hour sleep deprivation and a higher threshold for waking in the face of external stimuli. DR adult offspring mice exhibited small but significant increases in the expression of hypothalamic peroxisome proliferator-activated receptor α (Pparα) and brain-specific carnitine palmitoyltransferase 1 (Cpt1c) mRNA, two genes involved in lipid metabolism. Undernutrition during pregnancy may influence sleep homeostasis, with offspring exhibiting greater sleep pressure.


Centrally administered neuropeptide W-30 activates magnocellular neurosecretory cells in the supraoptic and paraventricular nuclei with neurosecretion in rats.

  • Makoto Kawasaki‎ et al.
  • The Journal of endocrinology‎
  • 2006‎

We examined the effects of i.c.v. administration of neuro-peptide W-30 (NPW30) on plasma arginine vasopressin (AVP) and plasma oxytocin (OXT) using RIA. The induction of c-fos mRNA, AVP heteronuclear (hn)RNA, and c-Fos protein (Fos) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of rats were also investigated using in situ hybridization histochemistry for c-fos mRNA and AVP hnRNA, and immunohistochemistry for Fos. Both plasma AVP and OXT were significantly increased at 5 and 15 min after i.c.v. administration of NPW30 (2.8 nmol/rat). In situ hybridization histochemistry revealed that the induction of c-fos mRNA and AVP hnRNA in the SON and PVN were significantly increased 15, 30, and 60 min after i.c.v. administration of NPW30 (1.4 nmol/rat). Dual immunostaining for Fos/AVP and Fos/OXT revealed that both AVP-like immunoreactive (LI) cells and OXT-LI cells exhibited nuclear Fos-LI in the SON and PVN, 90 min after i.c.v. administration of NPW30 (2.8 nmol/rat). These results suggest that central NPW30 may be involved in the regulation of secretion of AVP and OXT in the magnocellular neurosecretory cells in the SON and PVN.


Pain sensitivity increases with sleep disturbance under predictable chronic mild stress in mice.

  • Junhel Dalanon‎ et al.
  • Scientific reports‎
  • 2021‎

Even though it has been well documented that stress can lead to the development of sleep disorders and the intensification of pain, their relationships have not been fully understood. The present study was aimed at investigating the effects of predictable chronic mild stress (PCMS) on sleep-wake states and pain threshold, using the PCMS rearing conditions of mesh wire (MW) and water (W) for 21 days. Exposure to PCMS decreased the amount of non-rapid eye movement (NREM) sleep during the dark phase. Moreover, the chronicity of PCMS decreased slow-wave activity (SWA) during NREM sleep in the MW and W groups in both the light and dark phases. Mechanical and aversively hot thermal hyperalgesia were more intensified in the PCMS groups than the control. Higher plasma corticosterone levels were seen in mice subjected to PCMS, whereas TNF-α expression was found higher in the hypothalamus in the W and the trigeminal ganglion in the MW group. The W group had higher expression levels of IL-6 in the thalamus as well. The PCMS paradigm decreased SWA and may have intensified mechanical and thermal hyperalgesia. The current study also suggests that rearing under PCMS may cause impaired sleep quality and heightened pain sensation to painful mechanical and aversively hot thermal stimuli.


Changes in the expression of steroid metabolism-related genes in rat adrenal glands during selective REM sleep deprivation.

  • Kyoji Morita‎ et al.
  • Life sciences‎
  • 2003‎

Selective REM sleep deprivation was carried out under the conditions designed to minimize the adverse influence of environmental conditions and restricted movement, and the influence of REM sleep deprivation on adrenocortical steroid metabolism was investigated by measuring the steady-state levels of mRNAs encoding steroid metabolism-related genes, steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme cytochrome P450 (P450scc) and steroid 5alpha-reductase (5alpha-R), in rat adrenal glands. Selective REM sleep deprivation caused a significant decrease in StAR mRNA and an increase in 5alpha-R mRNA levels without any notable change in P450scc mRNA levels in the adrenal gland. In contrast, non-selective sleep disturbance, resulting in the partial reductions of non-REM and REM sleep, tended to increase both StAR and P450scc mRNA levels without any statistical significance. These results indicate that REM sleep deprivation by itself may affect the expression of steroid metabolism-related genes in the adrenal gland, suggesting a possible relation between REM sleep and adrenocortical steroid metabolism.


Effects of cholecystokinin (CCK)-8 on hypothalamic oxytocin-secreting neurons in rats lacking CCK-A receptor.

  • Hirofumi Hashimoto‎ et al.
  • Autonomic neuroscience : basic & clinical‎
  • 2005‎

Peripheral administration of cholecystokinin (CCK)-8 selectively activates oxytocin (OXT)-secreting neurons in the supraoptic (SON) and the paraventricular nuclei (PVN) with the elevation of plasma OXT level in rats. We examined the effects of intravenous (iv) administration of CCK-8 on the neuronal activity of hypothalamic OXT-secreting neurons and plasma OXT level in Otsuka Long-Evans Tokushima Fatty (OLETF) rats that have a congenital defect in the expression of the CCK-A receptor gene. In situ hybridization histochemistry (ISH) for c-fos mRNA revealed that the expression of the c-fos gene was not induced in the SON, the PVN, the nucleus of the tractus solitarius (NTS) and the area postrema (AP) 30 min after iv administration of CCK-8 (20 and 40 microg/kg) in OLETF rats. In Long-Evans Tokushima Otsuka (LETO) rats (controls), c-fos mRNA was detected abundantly in those nuclei 30 min after iv administration of CCK-8 (20 microg/kg). Immunohistochemistry for c-fos protein (Fos) showed that the distributions of Fos-like immunoreactivity (LI) were identical to the results obtained from ISH. Dual immunostaining for OXT and Fos revealed that Fos-LI was mainly observed in OXT-secreting neurons in the SON and the PVN of LETO rats 90 min after iv administration of CCK-8 (20 microg/kg). Radioimmunoassay for OXT and arginine vasopressin (AVP) showed that iv administration of CCK-8 did not cause significant change in the plasma OXT and AVP levels in OLETF rats, while iv administration of CCK-8 caused a significant elevation of plasma OXT level without changing the plasma AVP level in LETO rats. These results suggest that peripheral administration of CCK-8 may selectively activate the hypothalamic OXT-secreting neurons and brainstem neurons through CCK-A receptor in rats.


Feeding Rhythm-Induced Hypothalamic Agouti-Related Protein Elevation via Glucocorticoids Leads to Insulin Resistance in Skeletal Muscle.

  • Tetsuya Shiuchi‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Circadian phase shifts in peripheral clocks induced by changes in feeding rhythm often result in insulin resistance. However, whether the hypothalamic control system for energy metabolism is involved in the feeding rhythm-related development of insulin resistance is unknown. Here, we show the physiological significance and mechanism of the involvement of the agouti-related protein (AgRP) in evening feeding-associated alterations in insulin sensitivity. Evening feeding during the active dark period increased hypothalamic AgRP expression and skeletal muscle insulin resistance in mice. Inhibiting AgRP expression by administering an antisense oligo or a glucocorticoid receptor antagonist mitigated these effects. AgRP-producing neuron-specific glucocorticoid receptor-knockout (AgRP-GR-KO) mice had normal skeletal muscle insulin sensitivity even under evening feeding schedules. Hepatic vagotomy enhanced AgRP expression in the hypothalamus even during ad-lib feeding in wild-type mice but not in AgRP-GR-KO mice. The findings of this study indicate that feeding in the late active period may affect hypothalamic AgRP expression via glucocorticoids and induce skeletal muscle insulin resistance.


Molecular characterization and biological function of neuroendocrine regulatory peptide-3 in the rat.

  • Hiroaki Fujihara‎ et al.
  • Endocrinology‎
  • 2012‎

Neuroendocrine regulatory peptide (NERP)-3, derived from the neurosecretory protein VGF (non-aconymic), is a new biologically active peptide identified through peptidomic analysis of the peptides secreted by an endocrine cell line. Using a specific antibody recognizing the C-terminal region of NERP-3, immunoreactive (ir)-NERP-3 was identified in acid extracts of rat brain and gut as a 30-residue NERP-3 with N-terminal pyroglutamylation. Assessed by radioimmunoassay, ir-NERP-3 was more abundant in the brain, including the posterior pituitary (PP), than in the gut. Immunohistochemistry demonstrated that ir-NERP-3 was significantly increased in the suprachiasmatic nucleus, the magnocellular division of the paraventricular nucleus, and the external layer of the median eminence, but not in the supraoptic nucleus, after dehydration. The immunoreactivity was, however, markedly decreased in all of these locations after chronic salt loading. Intracerebroventricular administration of NERP-3 in conscious rats induced Fos expression in a subset of arginine vasopressin (AVP)-containing neurons in the supraoptic nucleus and the magnocellular division of the paraventricular nucleus. On in vitro isolated rat PP preparations, NERP-3 caused a significant AVP release in a dose-related manner, suggesting that NERP-3 in the PP could be an autocrine activator of AVP release. Taken together, the present results suggest that NERP-3 in the hypothalamo-neurohypophyseal system may be involved in the regulation of body fluid balance.


The short chain sugar acid, 2-buten-4-olide, activates oxytocin-secreting neurons but not arginine vasopressin-secreting neurons in the hypothalamus of rats.

  • Makoto Kawasaki‎ et al.
  • Brain research‎
  • 2006‎

The effects of intraperitoneal (i.p.) administration of 2-buten-4-olide (2-B4O), an endogenous sugar acid, on the hypothalamo-neurohypophyseal system were examined in rats. Plasma oxytocin (OXT) levels were significantly increased 15-60 min after i.p. administration of 2-B4O (100 mg/kg), whereas plasma arginine vasopressin (AVP) did not change. Dual immunostaining revealed that Fos-like immunoreactivity (LI) was predominantly observed in OXT-secreting neurons in the paraventricular (PVN) and the supraoptic nuclei (SON) 120 min after i.p. administration of 2-B4O. In addition, many Fos-LI neurons were observed in the nucleus of the tractus solitarius (NTS) after i.p. administration of 2-B4O. These results suggest that a peripherally administered high dose of 2-B4O activates OXT-secreting neurons in the hypothalamus through activation of NTS neurons, possibly as a result of a stress response.


Rotigotine suppresses sleep-related muscle activity augmented by injection of dialysis patients' sera in a mouse model of restless legs syndrome.

  • Kazuhiro Muramatsu‎ et al.
  • Scientific reports‎
  • 2019‎

Idiopathic restless legs syndrome (RLS) has a genetic basis wherein BTBD9 is associated with a higher risk of RLS. Hemodialysis patients also exhibit higher rates of RLS compared with the healthy population. However, little is known about the relationship of BTBD9 and end-stage renal disease to RLS pathophysiology. Here we evaluated sleep and leg muscle activity of Btbd9 mutant (MT) mice after administration of serum from patients with either idiopathic or RLS due to end-stage renal disease (renal RLS) and investigated the efficacy of treatment with the dopamine agonist rotigotine. At baseline, the amount of rapid eye movement (REM) sleep was decreased and leg muscle activity during non-REM (NREM) sleep was increased in MT mice compared to wild-type (WT) mice. Wake-promoting effects of rotigotine were attenuated by injection of serum from RLS patients in both WT and MT mice. Leg muscle activity during NREM sleep was increased only in MT mice injected with serum from RLS patients of ideiopatic and renal RLS. Subsequent treatment with rotigotine ameliorated this altered leg muscle activity. Together these results support previous reports showing a relationship between the Btbd9/dopamine system and RLS, and elucidate in part the pathophysiology of RLS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: