Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Deletion of Atf6α impairs astroglial activation and enhances neuronal death following brain ischemia in mice.

  • Akifumi Yoshikawa‎ et al.
  • Journal of neurochemistry‎
  • 2015‎

To dissect the role of endoplasmic reticulum (ER) stress and unfolded protein response in brain ischemia, we investigated the relevance of activating transcription factor 6α (ATF6α), a master transcriptional factor in the unfolded protein response, after permanent middle cerebral artery occlusion (MCAO) in mice. Enhanced expression of glucose-regulated protein78, a downstream molecular chaperone of ATF6α, was observed in both neurons and glia in the peri-infarct region of wild-type mice after MCAO. Analysis using wild-type and Atf6α(-/-) mice revealed a larger infarct volume and increased cell death in the peri-ischemic region of Atf6α(-/-) mice 5 days after MCAO. These phenotypes in Atf6α(-/-) mice were associated with reduced levels of astroglial activation/glial scar formation, and a spread of tissue damage into the non-infarct area. Further analysis in mice and cultured astrocytes revealed that signal transducer and activator of transcription 3 (STAT3)-glial fibrillary acidic protein signaling were diminished in Atf6α(-/-) astrocytes. A chemical chaperone, 4-phenylbutyrate, restored STAT3-glial fibrillary acidic protein signaling, while ER stressors, such as tunicamycin and thapsigargin, almost completely abolished signaling in cultured astrocytes. Furthermore, ER stress-induced deactivation of STAT3 was mediated, at least in part, by the ER stress-responsive tyrosine phosphatase, TC-PTP/PTPN2. These results suggest that ER stress plays critical roles in determining the level of astroglial activation and neuronal survival after brain ischemia.


Ndrg2 deficiency ameliorates neurodegeneration in experimental autoimmune encephalomyelitis.

  • Thuong Manh Le‎ et al.
  • Journal of neurochemistry‎
  • 2018‎

N-myc downstream-regulated gene 2 (NDRG2) is a differentiation- and stress-associated molecule that is predominantly expressed in astrocytes in the central nervous system. In this study, we examined the expression and role of NDRG2 in experimental autoimmune encephalomyelitis (EAE), which is an animal model of multiple sclerosis. Western blot and immunohistochemical analysis revealed that the expression of NDRG2 was observed in astrocytes of spinal cord, and was enhanced after EAE induction. A comparative analysis of wild-type and Ndrg2-/- mice revealed that deletion of Ndrg2 ameliorated the clinical symptoms of EAE. Although Ndrg2 deficiency only slightly affected the inflammatory response, based on the results of flow cytometry, qRT-PCR, and immunohistochemistry, it significantly reduced demyelination in the chronic phase, and, more importantly, neurodegeneration both in the acute and chronic phases. Further studies revealed that the expression of astrocytic glutamate transporters, including glutamate aspartate transporter (GLAST) and glutamate transporter 1, was more maintained in the Ndrg2-/- mice compared with wild-type mice after EAE induction. Consistent with these results, studies using cultured astrocytes revealed that Ndrg2 gene silencing increased the expression of GLAST, while NDRG2 over-expression decreased it without altering the expression of glial fibrillary acidic protein. The effect of NDRG2 on GLAST expression was associated with the activation of Akt, but not with the activation of nuclear factor-kappa B. These findings suggest that NDRG2 plays a key role in the pathology of EAE by modulating glutamate metabolism. Cover Image for this Issue: doi: 10.1111/jnc.14173.


Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate lipopolysaccharide-induced microglial and astrocytic neuroinflammation by increasing NAD.

  • Jureepon Roboon‎ et al.
  • Journal of neurochemistry‎
  • 2021‎

Neuroinflammation is initiated by activation of the brain's innate immune system in response to an inflammatory challenge. Insufficient control of neuroinflammation leads to enhanced or prolonged pathology in various neurological conditions including multiple sclerosis and Alzheimer's disease. Nicotinamide adenine dinucleotide (NAD+ ) plays critical roles in cellular energy metabolism and calcium homeostasis. Our previous study demonstrated that deletion of CD38, which consumes NAD+ , suppressed cuprizone-induced demyelination, neuroinflammation, and glial activation. However, it is still unknown whether CD38 directly affects neuroinflammation through regulating brain NAD+ level. In this study, we investigated the effect of CD38 deletion and inhibition and supplementation of NAD+ on lipopolysaccharide (LPS)-induced neuroinflammation in mice. Intracerebroventricular injection of LPS significantly increased CD38 expression especially in the hippocampus. Deletion of CD38 decreased LPS-induced inflammatory responses and glial activation. Pre-administration of apigenin, a flavonoid with CD38 inhibitory activity, or nicotinamide riboside (NR), an NAD+ precursor, increased NAD+ level, and significantly suppressed induction of cytokines and chemokines, glial activation and subsequent neurodegeneration after LPS administration. In cell culture, LPS-induced inflammatory responses were suppressed by treatment of primary astrocytes or microglia with apigenin, NAD+ , NR or 78c, the latter a specific CD38 inhibitor. Finally, all these compounds suppressed NF-κB signaling pathway in microglia. These results suggest that CD38-mediated neuroinflammation is linked to NAD+ consumption and that boosting NAD+ by CD38 inhibition and NR supplementation directly suppress neuroinflammation in the brain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: