Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

IMP-68, a Novel IMP-Type Metallo-β-Lactamase in Imipenem-Susceptible Klebsiella pneumoniae.

  • Hiroaki Kubota‎ et al.
  • mSphere‎
  • 2019‎

We recently detected a novel variant of an IMP-type metallo-β-lactamase gene (blaIMP-68) from meropenem-resistant but imipenem-susceptible Klebsiella pneumoniae TA6363 isolated in Tokyo, Japan. blaIMP-68 encodes a Ser262Gly point mutant of IMP-11, and transformation experiments showed that blaIMP-68 increased the MIC of carbapenems in recipient strains, whereas the MIC of imipenem was not greatly increased relative to that of other carbapenems, including meropenem. Kinetics experiments showed that IMP-68 imipenem-hydrolyzing activity was lower than that for other carbapenems, suggesting that the antimicrobial susceptibility profile of TA6363 originated from IMP-68 substrate specificity. Whole-genome sequencing showed that blaIMP-68 is harbored by the class 1 integron located on the IncL/M plasmid pTMTA63632 (88,953 bp), which was transferable via conjugation. The presence of plasmid-borne blaIMP-68 is notable, because it conferred antimicrobial resistance to carbapenems, except for imipenem, on Enterobacteriaceae and will likely affect treatment plans using antibacterial agents in clinical settings.IMPORTANCE IMP-type metallo-β-lactamases comprise one group of the "Big 5" carbapenemases. Here, a novel blaIMP-68 gene encoding IMP-68 (harboring a Ser262Gly point mutant of IMP-11) was discovered from meropenem-resistant but imipenem-susceptible Klebsiella pneumoniae TA6363. The Ser262Gly substitution was previously identified as important for substrate specificity according to a study of other IMP variants, including IMP-6. We confirmed that IMP-68 exhibited weaker imipenem-hydrolyzing activity than that for other carbapenems, demonstrating that the antimicrobial susceptibility profile of TA6363 originated from IMP-68 substrate specificity, with this likely to affect treatment strategies using antibacterial agents in clinical settings. Notably, the carbapenem resistance conferred by IMP-68 was undetectable based on the MIC of imipenem as a carbapenem representative, which demonstrates a comparable antimicrobial susceptibility profile to IMP-6-producing Enterobacteriaceae that previously spread in Japan due to lack of awareness of its existence.


Comparative Genome Analysis of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Sequence Type 131 Strains from Nepal and Japan.

  • Tohru Miyoshi-Akiyama‎ et al.
  • mSphere‎
  • 2016‎

The global spread of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli (ESBL-E. coli) has largely been driven by the pandemic sequence type 131 (ST131). This study aimed to determine the molecular epidemiology of their spread in two Asian countries with contrasting prevalence. We conducted whole-genome sequencing (WGS) of ESBL-E. coli ST131 strains collected prospectively from Nepal and Japan, two countries in Asia with a high and low prevalence of ESBL-E. coli, respectively. We also systematically compared these genomes with those reported from other regions using publicly available WGS data for E. coli ST131 strains. Further, we conducted phylogenetic analysis of these isolates and all genome sequence data for ST131 strains to determine sequence diversity. One hundred five unique ESBL-E. coli isolates from Nepal (February 2013 to July 2013) and 76 isolates from Japan (October 2013 to September 2014) were included. Of these isolates, 54 (51%) isolates from Nepal and 11 (14%) isolates from Japan were identified as ST131 by WGS. Phylogenetic analysis based on WGS suggested that the majority of ESBL-E. coli ST131 isolates from Nepal clustered together, whereas those from Japan were more diverse. Half of the ESBL-E. coli ST131 isolates from Japan belonged to virotype C, whereas half of the isolates from Nepal belonged to a virotype other than virotype A, B, C, D, or E (A/B/C/D/E). The dominant sublineage of E. coli ST131 was H30Rx, which was most prominent in ESBL-E. coli ST131 isolates from Nepal. Our results revealed distinct phylogenetic characteristics of ESBL-E. coli ST131 spread in the two geographical areas of Asia, indicating the involvement of multiple factors in its local spread in each region. IMPORTANCE The global spread of ESBL-E. coli has been driven in large part by pandemic sequence type 131 (ST131). A recent study suggested that, within E. coli ST131, certain sublineages have disseminated worldwide with little association with their geographical origin, highlighting the complexity of the epidemiology of this pandemic clone. ST131 bacteria have also been classified into four virotypes based on the distribution of certain virulence genes. Information on virotype distribution in Asian ST131 strains is limited. We conducted whole-genome sequencing of ESBL-E. coli ST131 strains collected in Nepal and Japan, two Asian countries with a high and low prevalence of ESBL-E. coli, respectively. We systematically compared these ST131 genomes with those reported from other regions to gain insights into the molecular epidemiology of their spread and found the distinct phylogenetic characteristics of the spread of ESBL-E. coli ST131 in these two geographical areas of Asia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: