Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Endomucin, a CD34-like sialomucin, marks hematopoietic stem cells throughout development.

  • Azusa Matsubara‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

To detect as yet unidentified cell-surface molecules specific to hematopoietic stem cells (HSCs), a modified signal sequence trap was successfully applied to mouse bone marrow (BM) CD34(-)c-Kit(+)Sca-1(+)Lin(-) (CD34(-)KSL) HSCs. One of the identified molecules, Endomucin, is an endothelial sialomucin closely related to CD34. High-level expression of Endomucin was confined to the BM KSL HSCs and progenitor cells, and, importantly, long-term repopulating (LTR)-HSCs were exclusively present in the Endomucin(+)CD34(-)KSL population. Notably, in the yolk sac, Endomucin expression separated multipotential hematopoietic cells from committed erythroid progenitors in the cell fraction positive for CD41, an early embryonic hematopoietic marker. Furthermore, developing HSCs in the intraembryonic aorta-gonad-mesonephros (AGM) region were highly enriched in the CD45(-)CD41(+)Endomucin(+) fraction at day 10.5 of gestation (E10.5) and in the CD45(+)CD41(+)Endomucin(+) fraction at E11.5. Detailed analyses of these fractions uncovered drastic changes in their BM repopulating capacities as well as in vitro cytokine responsiveness within this narrow time frame. Our findings establish Endomucin as a novel cell-surface marker for LTR-HSCs throughout development and provide a powerful tool in understanding HSC ontogeny.


Spred1 Safeguards Hematopoietic Homeostasis against Diet-Induced Systemic Stress.

  • Yuko Tadokoro‎ et al.
  • Cell stem cell‎
  • 2018‎

Stem cell self-renewal is critical for tissue homeostasis, and its dysregulation can lead to organ failure or tumorigenesis. While obesity can induce varied abnormalities in bone marrow components, it is unclear how diet might affect hematopoietic stem cell (HSC) self-renewal. Here, we show that Spred1, a negative regulator of RAS-MAPK signaling, safeguards HSC homeostasis in animals fed a high-fat diet (HFD). Under steady-state conditions, Spred1 negatively regulates HSC self-renewal and fitness, in part through Rho kinase activity. Spred1 deficiency mitigates HSC failure induced by infection mimetics and prolongs HSC lifespan, but it does not initiate leukemogenesis due to compensatory upregulation of Spred2. In contrast, HFD induces ERK hyperactivation and aberrant self-renewal in Spred1-deficient HSCs, resulting in functional HSC failure, severe anemia, and myeloproliferative neoplasm-like disease. HFD-induced hematopoietic abnormalities are mediated partly through alterations to the gut microbiota. Together, these findings reveal that diet-induced stress disrupts fine-tuning of Spred1-mediated signals to govern HSC homeostasis.


Promotion of Expansion and Differentiation of Hematopoietic Stem Cells by Interleukin-27 into Myeloid Progenitors to Control Infection in Emergency Myelopoiesis.

  • Jun-ichi Furusawa‎ et al.
  • PLoS pathogens‎
  • 2016‎

Emergency myelopoiesis is inflammation-induced hematopoiesis to replenish myeloid cells in the periphery, which is critical to control the infection with pathogens. Previously, pro-inflammatory cytokines such as interferon (IFN)-α and IFN-γ were demonstrated to play a critical role in the expansion of hematopoietic stem cells (HSCs) and myeloid progenitors, leading to production of mature myeloid cells, although their inhibitory effects on hematopoiesis were also reported. Therefore, the molecular mechanism of emergency myelopoiesis during infection remains incompletely understood. Here, we clarify that one of the interleukin (IL)-6/IL-12 family cytokines, IL-27, plays an important role in the emergency myelopoiesis. Among various types of hematopoietic cells in bone marrow, IL-27 predominantly and continuously promoted the expansion of only Lineage-Sca-1+c-Kit+ (LSK) cells, especially long-term repopulating HSCs and myeloid-restricted progenitor cells with long-term repopulating activity, and the differentiation into myeloid progenitors in synergy with stem cell factor. These progenitors expressed myeloid transcription factors such as Spi1, Gfi1, and Cebpa/b through activation of signal transducer and activator of transcription 1 and 3, and had enhanced potential to differentiate into migratory dendritic cells (DCs), neutrophils, and mast cells, and less so into macrophages, and basophils, but not into plasmacytoid DCs, conventional DCs, T cells, and B cells. Among various cytokines, IL-27 in synergy with the stem cell factor had the strongest ability to augment the expansion of LSK cells and their differentiation into myeloid progenitors retaining the LSK phenotype over a long period of time. The experiments using mice deficient for one of IL-27 receptor subunits, WSX-1, and IFN-γ revealed that the blood stage of malaria infection enhanced IL-27 expression through IFN-γ production, and the IL-27 then promoted the expansion of LSK cells, differentiating and mobilizing them into spleen, resulting in enhanced production of neutrophils to control the infection. Thus, IL-27 is one of the limited unique cytokines directly acting on HSCs to promote differentiation into myeloid progenitors during emergency myelopoiesis.


PDK1 plays a vital role on hematopoietic stem cell function.

  • Tianyuan Hu‎ et al.
  • Scientific reports‎
  • 2017‎

3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a pivotal regulator in the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway that have been shown to play key roles in the functional development of B and T cells via activation of AGC protein kinases during hematopoiesis. However, the role of PDK1 in HSCs has not been fully defined. Here we specifically deleted the PDK1 gene in the hematopoietic system and found that PDK1-deficient HSCs exhibited impaired function and defective lineage commitment abilities. Lack of PDK1 caused HSCs to be less quiescent and to produce a higher number of phenotypic HSCs and fewer progenitors. PDK1-deficient HSCs were also unable to reconstitute the hematopoietic system. Notably, HSC function was more dependent on PDK1 than on mTORC2, which indicates that PDK1 plays a dominant role in the Akt-mediated regulation of HSC function. PDK1-deficient HSCs also exhibited reduced ROS levels, and treatment of PDK1-deficient HSCs with L-butathioninesulfoximine in vitro elevated the low ROS level and promoted colony formation. Therefore, PDK1 appears to contribute to HSC function partially via regulating ROS levels.


TGF-β1 Negatively Regulates the Number and Function of Hematopoietic Stem Cells.

  • Xiaofang Wang‎ et al.
  • Stem cell reports‎
  • 2018‎

Transforming growth factor β1 (TGF-β1) plays a role in the maintenance of quiescent hematopoietic stem cells (HSCs) in vivo. We asked whether TGF-β1 controls the cell cycle status of HSCs in vitro to enhance the reconstitution activity. To examine the effect of TGF-β1 on the HSC function, we used an in vitro culture system in which single HSCs divide with the retention of their short- and long-term reconstitution ability. Extensive single-cell analyses showed that, regardless of its concentration, TGF-β1 slowed down the cell cycle progression of HSCs but consequently suppressed their self-renewal potential. Cycling HSCs were not able to go back to quiescence with TGF-β1. This study revealed a negative role of TGF-β1 in the regulation of the HSC number and reconstitution activity.


Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment.

  • Yohei Morita‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

Hematopoietic stem cells (HSCs) have been extensively characterized based on functional definitions determined by experimental transplantation into lethally irradiated mice. In mice, HSCs are heterogeneous with regard to self-renewal potential, in vitro colony-forming activity, and in vivo behavior. We attempted prospective isolation of HSC subsets with distinct properties among CD34(-/low) c-Kit+Sca-1+Lin- (CD34-KSL) cells. CD34-KSL cells were divided, based on CD150 expression, into three fractions: CD150high, CD150med, and CD150neg cells. Compared with the other two fractions, CD150high cells were significantly enriched in HSCs, with great self-renewal potential. In vitro colony assays revealed that decreased expression of CD150 was associated with reduced erythroblast/megakaryocyte differentiation potential. All three fractions were regenerated only from CD150high cells in recipient mice. Using single-cell transplantation studies, we found that a fraction of CD150high cells displayed latent and barely detectable myeloid engraftment in primary-recipient mice but progressive and multilineage reconstitution in secondary-recipient mice. These findings highlight the complexity and hierarchy of reconstitution capability, even among HSCs in the most primitive compartment.


Lymphoid-biased hematopoietic stem cells and myeloid-biased hematopoietic progenitor cells have radioprotection activity.

  • Shanshan Zhang‎ et al.
  • Blood science (Baltimore, Md.)‎
  • 2021‎

Radioprotection was previously considered as a function of hematopoietic stem cells (HSCs). However, recent studies have reported its activity in hematopoietic progenitor cells (HPCs). To address this issue, we compared the radioprotection activity in 2 subsets of HSCs (nHSC1 and 2 populations) and 4 subsets of HPCs (nHPC1-4 populations) of the mouse bone marrow, in relation to their in vitro and in vivo colony-forming activity. Significant radioprotection activity was detected in the nHSC2 population enriched in lymphoid-biased HSCs. Moderate radioprotection activity was detected in nHPC1 and 2 populations enriched in myeloid-biased HPCs. Low radioprotection activity was detected in the nHSC1 enriched in myeloid-biased HSCs. No radioprotection activity was detected in the nHPC3 and 4 populations that included MPP4 (LMPP). Single-cell colony assay combined with flow cytometry analysis showed that the nHSC1, nHSC2, nHPC1, and nHPC2 populations had the neutrophils/macrophages/erythroblasts/megakaryocytes (nmEMk) differentiation potential whereas the nHPC3 and 4 populations had only the nm differentiation potential. Varying day 12 spleen colony-forming units (day 12 CFU-S) were detected in the nHSC1, nHSC2, and nHPC1-3 populations, but very few in the nHPC4 population. These data suggested that nmEMk differentiation potential and day 12 CFU-S activity are partially associated with radioprotection activity. Reconstitution analysis showed that sufficient myeloid reconstitution around 12 to 14 days after transplantation was critical for radioprotection. This study implied that radioprotection is specific to neither HSC nor HPC populations, and that lymphoid-biased HSCs and myeloid-biased HPCs as populations play a major role in radioprotection.


Multiple cells of origin in common with various types of mouse N-Myc acute leukemia.

  • Haitao Bai‎ et al.
  • Leukemia research‎
  • 2022‎

Little is known regarding whether the cell of origin differs among different leukemia types. To address this fundamental issue, we determined the cell of origin in five distinct types of acute leukemia induced by N-Myc overexpression in mice. CD150+CD48-CD41-CD34-c-Kit+Sca-1+Lin- (KSL) (HSC1) cells, CD150-CD48-CD41-CD34-KSL (HSC2) cells, CD150+CD41+CD34-KSL (HPC1) cells, CD150+CD41+CD34+KSL (HPC2) cells, and CD150-CD41-CD34+KSL (HPC3) cells were purified from the bone marrow of adult C57BL/6 mice, transduced with the N-Myc retrovirus vector, and transplanted into lethally irradiated mice. B-cell acute lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL), acute myeloid leukemia (AML), acute undifferentiated leukemia (AUL), and mixed phenotype acute leukemia (MPAL) developed from five populations. RNA sequencing data supported the phenotypical diagnoses of leukemia, except that AUL appeared transcriptionally close to T-ALL. Whole-genome sequencing revealed that retroviral integration sites were irrelevant to the leukemia types and that T-ALL and AML of MPAL shared the same integration site and many gene mutations, suggesting their common origin. Additionally, leukemic stem cells were identified in the KSL cell population, suggesting that the phenotypes of leukemic stem cells are irrelevant to leukemia types. This study provides experimental evidence for the similar and multiple cells of origin in acute leukemia.


PHF6 maintains acute myeloid leukemia via regulating NF-κB signaling pathway.

  • Shuaibing Hou‎ et al.
  • Leukemia‎
  • 2023‎

Acute myeloid leukemia (AML) is a major hematopoietic malignancy characterized by the accumulation of immature and abnormally differentiated myeloid cells in bone marrow. Here with in vivo and in vitro models, we demonstrate that the Plant homeodomain finger gene 6 (PHF6) plays an important role in apoptosis and proliferation in myeloid leukemia. Phf6 deficiency could delay the progression of RUNX1-ETO9a and MLL-AF9-induced AML in mice. PHF6 depletion inhibited the NF-κB signaling pathways by disrupting the PHF6-p50 complex and partially inhibiting the nuclear translocation of p50 to suppress the expression of BCL2. Treating PHF6 over-expressed myeloid leukemia cells with NF-κB inhibitor (BAY11-7082) significantly increased their apoptosis and decreased their proliferation. Taken together, in contrast to PHF6 as a tumor suppressor in T-ALL as reported, we found that PHF6 also plays a pro-oncogenic role in myeloid leukemia, and thus potentially to be a therapeutic target for treating myeloid leukemia patients.


R274X-mutated Phf6 increased the self-renewal and skewed T cell differentiation of hematopoietic stem cells.

  • Yanjie Lan‎ et al.
  • iScience‎
  • 2023‎

The PHD finger protein 6 (PHF6) mutations frequently occurred in hematopoietic malignancies. Although the R274X mutation in PHF6 (PHF6R274X) is one of the most common mutations identified in T cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML) patients, the specific role of PHF6R274X in hematopoiesis remains unexplored. Here, we engineered a knock-in mouse line with conditional expression of Phf6R274X-mutated protein in the hematopoietic system (Phf6R274X mouse). The Phf6R274X mice displayed an enlargement of hematopoietic stem cells (HSCs) compartment and increased proportion of T cells in bone marrow. More Phf6R274X T cells were in activated status than control. Moreover, Phf6R274X mutation led to enhanced self-renewal and biased T cells differentiation of HSCs as assessed by competitive transplantation assays. RNA-sequencing analysis confirmed that Phf6R274X mutation altered the expression of key genes involved in HSC self-renewal and T cell activation. Our study demonstrated that Phf6R274X plays a critical role in fine-tuning T cells and HSC homeostasis.


Asymmetric division and lineage commitment at the level of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter cell pairs.

  • Hina Takano‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

How hematopoietic stem cells (HSCs) commit to a particular lineage is unclear. A high degree of HSC purification enabled us to address this issue at the clonal level. Single-cell transplantation studies revealed that 40% of the CD34-/low, c-Kit+, Sca-1+, and lineage marker- (CD34-KSL) cells in adult mouse bone marrow were able, as individual cells, to reconstitute myeloid and B- and T-lymphoid lineages over the long-term. Single-cell culture showed that >40% of CD34-KSL cells could form neutrophil (n)/macrophage (m)/erythroblast (E)/megakaryocyte (M) (nmEM) colonies. Assuming that a substantial portion of long-term repopulating cells can be detected as nmEM cells within this population, we compared differentiation potentials between individual pairs of daughter and granddaughter cells derived in vitro from single nmEM cells. One of the two daughter or granddaughter cells remained an nmEM cell. The other showed a variety of combinations of differentiation potential. In particular, an nmEM cell directly gave rise, after one cell division, to progenitor cells committed to nm, EM, or M lineages. The probability of asymmetric division of nmEM cells depended on the cytokines used. These data strongly suggest that lineage commitment takes place asymmetrically at the level of HSCs under the influence of external factors.


Rheb1-mTORC1 maintains macrophage differentiation and phagocytosis in mice.

  • Xiaomin Wang‎ et al.
  • Experimental cell research‎
  • 2016‎

Ras homolog enriched in brain (Rheb1) is a small GTPase and is known to be a direct activator of mTORC1. Dysregulation of Rheb1 has been shown to impair the cellular-energetic state and cell homeostasis. However, the role of Rheb1 in monocytes/macrophages differentiation and maturation is not clear. Here, we investigate the role of Rheb1 in mouse myelopoiesis using a Rheb1 conditional deletion murine model. We found that the absolute number of macrophages decreased in the bone marrow (BM) of Rheb1-deficient mice. Loss of Rheb1 inhibited the monocyte-to-macrophage differentiation process. Additionally, Rheb1 deletion reduced phagocytosis ability of macrophages by inhibiting the mTORC1 signaling pathway. Furthermore, 3BDO (an activator of mTORC1) rescued the phagocytosis ability of Rheb1-deficient macrophages. Thus, Rheb1 is critical for macrophage production and phagocytosis and executes these activities possibly via mTORC1-dependent pathway.


Stepwise development of hematopoietic stem cells from embryonic stem cells.

  • Kenji Matsumoto‎ et al.
  • PloS one‎
  • 2009‎

The cellular ontogeny of hematopoietic stem cells (HSCs) remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC) differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs) as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+)CD41(+)CD45(-) phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.


Interleukin-12 supports in vitro self-renewal of long-term hematopoietic stem cells.

  • Shanshan Zhang‎ et al.
  • Blood science (Baltimore, Md.)‎
  • 2019‎

Hematopoietic stem cells (HSCs) self-renew or differentiate through division. Cytokines are essential for inducing HSC division, but the optimal cytokine combination to control self-renewal of HSC in vitro remains unclear. In this study, we compared the effects of interleukin-12 (IL-12) and thrombopoietin (TPO) in combination with stem cell factor (SCF) on in vitro self-renewal of HSCs. Single-cell assays were used to overcome the heterogeneity issue of HSCs, and serum-free conditions were newly established to permit reproduction of data. In single-cell cultures, CD150+CD48-CD41-CD34-c-Kit+Sca-1+lineage- HSCs divided significantly more slowly in the presence of SCF+IL-12 compared with cells in the presence of SCF+TPO. Serial transplantation of cells from bulk and clonal cultures revealed that TPO was more effective than IL-12 at supporting in vitro self-renewal of short-term (<6 months) HSCs, resulting in a monophasic reconstitution wave formation, whereas IL-12 was more effective than TPO at supporting the in vitro self-renewal of long-term (>6 months) HSCs, resulting in a biphasic reconstitution wave formation. The control of division rate in HSCs appeared to be crucial for preventing the loss of self-renewal potential from their in vitro culture.


De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells.

  • Yuko Tadokoro‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differentiation. To test this hypothesis, we examined the role of Dnmt3a and Dnmt3b in adult stem cells. CD34(-/low), c-Kit(+), Sca-1(+), lineage marker(-) (CD34(-) KSL) cells, a fraction of mouse bone marrow cells highly enriched in hematopoietic stem cells (HSCs), expressed both Dnmt3a and Dnmt3b. Using retroviral Cre gene transduction, we conditionally disrupted Dnmt3a, Dnmt3b, or both Dnmt3a and Dnmt3b (Dnmt3a/Dnmt3b) in CD34(-) KSL cells purified from mice in which the functional domains of these genes are flanked by two loxP sites. We found that Dnmt3a and Dnmt3b function as de novo DNA methyltransferases during differentiation of hematopoietic cells. Unexpectedly, in vitro colony assays and in vivo transplantation assays showed that both myeloid and lymphoid lineage differentiation potentials were maintained in Dnmt3a-, Dnmt3b-, and Dnmt3a/Dnmt3b-deficient HSCs. However, Dnmt3a/Dnmt3b-deficient HSCs, but not Dnmt3a- or Dnmt3b-deficient HSCs, were incapable of long-term reconstitution in transplantation assays. These findings establish a critical role for DNA methylation by Dnmt3a and Dnmt3b in HSC self-renewal.


Bone marrow endothelial cell-derived interleukin-4 contributes to thrombocytopenia in acute myeloid leukemia.

  • Ai Gao‎ et al.
  • Haematologica‎
  • 2019‎

Normal hematopoiesis can be disrupted by the leukemic bone marrow microenvironment, which leads to cytopenia-associated symptoms including anemia, hemorrhage and infection. Thrombocytopenia is a major and sometimes fatal complication in patients with acute leukemia. However, the mechanisms underlying defective thrombopoiesis in leukemia have not been fully elucidated. In the steady state, platelets are continuously produced by megakaryocytes. Using an MLL-AF9-induced acute myeloid leukemia mouse model, we demonstrated a preserved number and proportion of megakaryocyte-primed hematopoietic stem cell subsets, but weakened megakaryocytic differentiation via both canonical and non-canonical routes. This primarily accounted for the dramatic reduction of megakaryocytic progenitors observed in acute myeloid leukemia bone marrow and a severe disruption of the maturation of megakaryocytes. Additionally, we discovered overproduction of interleukin-4 from bone marrow endothelial cells in acute myeloid leukemia and observed inhibitory effects of interleukin-4 throughout the process of megakaryopoiesis in vivo Furthermore, we observed that inhibition of interleukin-4 in combination with induction chemotherapy not only promoted recovery of platelet counts, but also prolonged the duration of remission in our acute myeloid leukemia mouse model. Our study elucidates a new link between interleukin-4 signaling and defective megakaryopoiesis in acute myeloid leukemia bone marrow, thereby offering a potential therapeutic target in acute myeloid leukemia.


Gene knockout in highly purified mouse hematopoietic stem cells by CRISPR/Cas9 technology.

  • Yan Dong‎ et al.
  • Journal of immunological methods‎
  • 2021‎

The CRISPR/Cas9 system has been used for genome editing of human and mouse cells. In this study, we established a protocol for gene knockout (KO) in mouse hematopoietic stem cells (HSCs). HSCs were highly purified from the bone marrow of tamoxifen-treated Cas9-EGFP/Cre-ER transgenic mice, maintained in serum-free polyvinyl alcohol culture with cytokines, lentivirally transduced with sgRNA-Crimson, and transplanted into lethally irradiated mice with competitor cells. Previous studies of Pax5 KO mice have shown B cell differentiation block. To verify our KO HSC strategy, we deleted Pax5 gene in 600 CD201+CD150+CD48-c-Kit+Sca-1+Lin- cells (HSC1 cells), highly enriched in myeloid-biased HSCs, and CD201+CD150-CD48- c-Kit+Sca-1+Lin- cells (HSC2 cells), highly enriched in lymphoid-biased HSCs. As predicted, both Pax5 KO HSC1 and HSC2 cells showed few B cells in the peripheral blood and the accumulation of pro-B cells in the bone marrow of recipient mice. Our data suggesetd that myeloid-biased and lymphoid-biased HSCs share a common B cell differentiation pathway. This population-specific KO strategy will find its applications for gene editing in a varity of somatic cells, particuarly rare stem and progenitor cells from different tissues.


Granulocyte colony-stimulating factor directly acts on mouse lymphoid-biased but not myeloid-biased hematopoietic stem cells.

  • Miner Xie‎ et al.
  • Haematologica‎
  • 2021‎

Granulocyte colony-stimulating factor (G-CSF) is widely used in clinical settings to mobilize hematopoietic stem cells (HSCs) into the circulation for HSC harvesting and transplantation. However, whether G-CSF directly stimulates HSCs to change their cell cycle state and fate is controversial. HSCs are a heterogeneous population consisting of different types of HSCs, such as myeloid-biased HSCs and lymphoid-biased HSCs. We hypothesized that G-CSF has different effects on different types of HSCs. To verify this, we performed serum-free single-cell culture and competitive repopulation with cultured cells. Single highly purified HSCs and hematopoietic progenitor cells (HPCs) were cultured with stem cell factor (SCF), SCF + G-CSF, SCF + granulocyte/macrophage (GM)-CSF, or SCF + thrombopoietin (TPO) for 7 days. Compared with SCF alone, SCF + G-CSF increased the number of divisions of cells from the lymphoid-biased HSC-enriched population but not that of cells from the My-bi HSC-enriched population. SCF + G-CSF enhanced the level of reconstitution of lymphoid-biased HSCs but not that of myeloid-biased HSCs. Clonal transplantation assay also showed that SCF + G-CSF did not increase the frequency of myeloid-biased HSCs. These data showed that G-CSF directly acted on lymphoid-biased HSCs but not myeloid-biased HSCs. Our study also revised the cytokine network at early stages of hematopoiesis: SCF directly acted on myeloid-biased HSCs; TPO directly acted on myeloid-biased HSCs and lymphoid-biased HSCs; and GM-CSF acted only on HPCs. Early hematopoiesis is controlled differentially and sequentially by a number of cytokines.


Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells.

  • Ryo Yamamoto‎ et al.
  • Cell‎
  • 2013‎

Consensus holds that hematopoietic stem cells (HSCs) give rise to multipotent progenitors (MPPs) of reduced self-renewal potential and that MPPs eventually produce lineage-committed progenitor cells in a stepwise manner. Using a single-cell transplantation system and marker mice, we unexpectedly found myeloid-restricted progenitors with long-term repopulating activity (MyRPs), which are lineage-committed to megakaryocytes, megakaryocyte-erythroid cells, or common myeloid cells (MkRPs, MERPs, or CMRPs, respectively) in the phenotypically defined HSC compartment together with HSCs. Paired daughter cell assays combined with transplantation revealed that HSCs can give rise to HSCs via symmetric division or directly differentiate into MyRPs via asymmetric division (yielding HSC-MkRP or HSC-CMRP pairs). These myeloid bypass pathways could be essential for fast responses to ablation stress. Our results show that loss of self-renewal and stepwise progression through specific differentiation stages are not essential for lineage commitment of HSCs and suggest a revised model of hematopoietic differentiation.


Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche.

  • Satoshi Yamazaki‎ et al.
  • Cell‎
  • 2011‎

Hematopoietic stem cells (HSCs) reside and self-renew in the bone marrow (BM) niche. Overall, the signaling that regulates stem cell dormancy in the HSC niche remains controversial. Here, we demonstrate that TGF-β type II receptor-deficient HSCs show low-level Smad activation and impaired long-term repopulating activity, underlining the critical role of TGF-β/Smad signaling in HSC maintenance. TGF-β is produced as a latent form by a variety of cells, so we searched for those that express activator molecules for latent TGF-β. Nonmyelinating Schwann cells in BM proved responsible for activation. These glial cells ensheathed autonomic nerves, expressed HSC niche factor genes, and were in contact with a substantial proportion of HSCs. Autonomic nerve denervation reduced the number of these active TGF-β-producing cells and led to rapid loss of HSCs from BM. We propose that glial cells are components of a BM niche and maintain HSC hibernation by regulating activation of latent TGF-β.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: