Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Exacerbation of experimental autoimmune encephalomyelitis in mice deficient for DCIR, an inhibitory C-type lectin receptor.

  • Akimasa Seno‎ et al.
  • Experimental animals‎
  • 2015‎

Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor containing a carbohydrate recognition domain in its extracellular portion and an immunoreceptor tyrosine–based inhibitory motif, which transduces negative signals into cells, in its cytoplasmic portion. Previously, we showed that Dcir(–/–) mice spontaneously develop autoimmune diseases such as enthesitis and sialadenitis due to excess expansion of dendritic cells (DCs), suggesting that DCIR is critically important for the homeostasis of the immune system. In this report, we analyzed the role of DCIR in the development of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease model for multiple sclerosis. We found that EAE was exacerbated in Dcir(–/–) mice associated with severe demyelination of the spinal cords. The number of infiltrated CD11c(+) DCs and CD4(+) T cells into spinal cords was increased in Dcir(–/–) mice. Recall proliferative response of lymph node cells was higher in Dcir(–/–) mice compared with wild-type mice. These observations suggest that DCIR is an important negative regulator of the immune system, and Dcir(–/–) mice should be useful for analyzing the roles of DCIR in an array of autoimmune diseases.


IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2(+)Vγ6(+)γδ T cells.

  • Aoi Akitsu‎ et al.
  • Nature communications‎
  • 2015‎

Interleukin-17 (IL-17)-producing γδ T (γδ17) cells have been implicated in inflammatory diseases, but the underlying pathogenic mechanisms remain unclear. Here, we show that both CD4(+) and γδ17 cells are required for the development of autoimmune arthritis in IL-1 receptor antagonist (IL-1Ra)-deficient mice. Specifically, activated CD4(+) T cells direct γδ T-cell infiltration by inducing CCL2 expression in joints. Furthermore, IL-17 reporter mice reveal that the Vγ6(+) subset of CCR2(+) γδ T cells preferentially produces IL-17 in inflamed joints. Importantly, because IL-1Ra normally suppresses IL-1R expression on γδ T cells, IL-1Ra-deficient mice exhibit elevated IL-1R expression on Vγ6(+) cells, which play a critical role in inducing them to produce IL-17. Our findings demonstrate a pathogenic mechanism in which adaptive and innate immunity induce an autoimmune disease in a coordinated manner.


Identification of the PLA2G6 c.1579G>A Missense Mutation in Papillon Dog Neuroaxonal Dystrophy Using Whole Exome Sequencing Analysis.

  • Masaya Tsuboi‎ et al.
  • PloS one‎
  • 2017‎

Whole exome sequencing (WES) has become a common tool for identifying genetic causes of human inherited disorders, and it has also recently been applied to canine genome research. We conducted WES analysis of neuroaxonal dystrophy (NAD), a neurodegenerative disease that sporadically occurs worldwide in Papillon dogs. The disease is considered an autosomal recessive monogenic disease, which is histopathologically characterized by severe axonal swelling, known as "spheroids," throughout the nervous system. By sequencing all eleven DNA samples from one NAD-affected Papillon dog and her parents, two unrelated NAD-affected Papillon dogs, and six unaffected control Papillon dogs, we identified 10 candidate mutations. Among them, three candidates were determined to be "deleterious" by in silico pathogenesis evaluation. By subsequent massive screening by TaqMan genotyping analysis, only the PLA2G6 c.1579G>A mutation had an association with the presence or absence of the disease, suggesting that it may be a causal mutation of canine NAD. As a human homologue of this gene is a causative gene for infantile neuroaxonal dystrophy, this canine phenotype may serve as a good animal model for human disease. The results of this study also indicate that WES analysis is a powerful tool for exploring canine hereditary diseases, especially in rare monogenic hereditary diseases.


DNA Microarray Analysis on the Genes Differentially Expressed in the Liver of the Pufferfish, Takifugu rubripes, Following an Intramuscular Administration of Tetrodotoxin.

  • Takuya Matsumoto‎ et al.
  • Microarrays (Basel, Switzerland)‎
  • 2014‎

Pufferfish accumulate tetrodotoxin (TTX) mainly in the liver and ovary. This study aims at investigating the effect of TTX accumulation in the liver of cultured specimens of torafugu Takifugu rubripes on the hepatic gene expression by microarray analysis on Day 5 after the intramuscular administration of 0.25 mg TTX/kg body weight into the caudal muscle. TTX was detected in the liver, skin and ovary in the TTX-administered individuals. The total amount of TTX accumulated in the body was 67 ± 8% of the administered dose on Day 5. Compared with the buffer-administered control group, a total of 59 genes were significantly upregulated more than two-fold in the TTX-administered group, including those encoding chymotrypsin-like elastase family member 2A, transmembrane protein 168 and Rho GTP-activating protein 29. In contrast, a total of 427 genes were downregulated by TTX administration, including those encoding elongation factor G2, R-spondin-3, nuclear receptor activator 2 and fatty acyl-CoA hydrolase precursor. In conclusion, our results demonstrate that the intramuscular administration of TTX changes the expression of hepatic genes involved in various signaling pathways.


Generation of a mouse model with down-regulated U50 snoRNA (SNORD50) expression and its organ-specific phenotypic modulation.

  • Yuuichi Soeno‎ et al.
  • PloS one‎
  • 2013‎

Box C/D-type small nucleolar RNAs (snoRNAs) are functional RNAs responsible for mediating 2'-O-ribose methylation of ribosomal RNAs (rRNAs) within the nucleolus. In the past years, evidence for the involvement of human U50 snoRNA in tumorigenesis has been accumulating. We previously identified U50HG, a non-protein-coding gene that hosted a box C/D-type U50 snoRNA, in a chromosomal breakpoint in a human B-cell lymphoma. Mouse genome analysis revealed four mouse U50 (mU50) host-genes: three mU50HG-a gene variants that were clustered in the genome and an mU50HG-b gene that we supposed to be the U50HG ortholog. In this study, to investigate the physiological importance of mU50 snoRNA and its involvement in tumorigenesis, we eliminated mU50 snoRNA sequences from the mU50HG-b gene. The established mouse line (ΔmU50(HG-b)) showed a significant reduction of mU50 snoRNA expression without alteration of the host-gene length and exon-intron structure, and the corresponding target rRNA methylation in various organs was reduced. Lifelong phenotypic monitoring showed that the ΔmU50(HG-b) mice looked almost normal without accelerated tumorigenicity; however, a notable difference was the propensity for anomalies in the lymphoid organs. Transcriptome analysis showed that dozens of genes, including heat shock proteins, were differentially expressed in ΔmU50(HG-b) mouse lymphocytes. This unique model of a single snoRNA knockdown with intact host-gene expression revealed further new insights into the discrete transcriptional regulation of multiple mU50 host-genes and the complicated dynamics involved in organ-specific processing and maintenance of snoRNAs.


Different effects of growth hormone and fasting on the induction patterns of two hormone-sensitive lipase genes in red seabream Pagrus major.

  • Anurak Khieokhajonkhet‎ et al.
  • General and comparative endocrinology‎
  • 2016‎

Growth hormone (GH) increases phosphorylation and mRNA levels of hormone-sensitive lipase (HSL) in the livers of some marine teleosts. The hepatic GH-HSL axis appears to play important roles in fasting-induced lipolysis. However, it is not known whether GH exerts similar effects on HSL in fish adipose tissues. Functional differentiation of two fish-specific HSL isoforms (HSL1 and HSL2) also remains unclear. The present study seeks to address two unanswered questions about fish lipolysis using red seabream (Pagrus major): (1) Does GH increase phosphorylation and mRNA levels of HSL in adipose tissue? (2) How do GH and fasting affect mRNA levels of two HSL isoform genes in the liver and adipose tissue? To this end, we first cloned HSL1 and HSL2 cDNAs and investigated their tissue distribution. Transcripts of both HSLs and HSL1 proteins were abundant in the visceral adipose tissue, gonads, and liver, suggesting the important role of HSL in adipose tissue lipolysis. HSL2 transcript levels were 20-65% those of HSL1 except in the skin, and HSL2 proteins were not detected by our in-house antisera. Ex vivo administration of GH increased HSL1 phosphorylation, non-esterified fatty acid (NEFA) release, and levels of HSL1 and HSL2 mRNA in both the liver and visceral adipose tissue. Hepatic HSL2 mRNA was particularly sensitive to GH administration and sometimes exceeded HSL1 mRNA levels with up to 13-fold induction. In contrast, fasting for 4 and 7d increased HSL1 mRNA levels, but had only marginal effects on HSL2 mRNA levels in both adipose tissue or liver. We concluded that GH would increase HSL mRNAs during adipose tissue lipolysis in red seabream; however, GH and fasting result in different induction ratio of two HSL isoform genes, suggesting that other hormone(s) also contributes to fasting-induced lipolysis.


Involvement of interleukin-1 type 1 receptors in lipopolysaccharide-induced sickness responses.

  • Takashi Matsuwaki‎ et al.
  • Brain, behavior, and immunity‎
  • 2017‎

Sickness responses to lipopolysaccharide (LPS) were examined in mice with deletion of the interleukin (IL)-1 type 1 receptor (IL-1R1). IL-1R1 knockout (KO) mice displayed intact anorexia and HPA-axis activation to intraperitoneally injected LPS (anorexia: 10 or 120µg/kg; HPA-axis: 120µg/kg), but showed attenuated but not extinguished fever (120µg/kg). Brain PGE2 synthesis was attenuated, but Cox-2 induction remained intact. Neither the tumor necrosis factor-α (TNFα) inhibitor etanercept nor the IL-6 receptor antibody tocilizumab abolished the LPS induced fever in IL-1R1 KO mice. Deletion of IL-1R1 specifically in brain endothelial cells attenuated the LPS induced fever, but only during the late, 3rd phase of fever, whereas deletion of IL-1R1 on neural cells or on peripheral nerves had little or no effect on the febrile response. We conclude that while IL-1 signaling is not critical for LPS induced anorexia or stress hormone release, IL-1R1, expressed on brain endothelial cells, contributes to the febrile response to LPS. However, also in the absence of IL-1R1, LPS evokes a febrile response, although this is attenuated. This remaining fever seems not to be mediated by IL-6 receptors or TNFα, but by some yet unidentified pyrogenic factor.


Establishment and analysis of a novel mouse line carrying a conditional knockin allele of a cancer-specific FBXW7 mutation.

  • Tsuneo Ikenoue‎ et al.
  • Scientific reports‎
  • 2018‎

F-box and WD40 domain protein 7 (FBXW7) is a component of the SKP1-CUL1-F-box protein (SCF) complex that mediates the ubiquitination of diverse oncogenic target proteins. The exploration of FBXW7 mutations in human primary cancer has revealed three mutation hotspots at conserved arginine residues (Arg465, Arg479, and Arg505) in the WD40 domain, which are critical for substrate recognition. To study the function of human FBXW7 R465C , the most frequent mutation in human malignancies, we generated a novel conditional knockin mouse line of murine Fbxw7 R468C corresponding to human FBXW7 R465C . Systemic heterozygous knockin of the Fbxw7 R468C mutation resulted in perinatal lethality due to defects in lung development, and occasionally caused an eyes-open at birth phenotype and cleft palate. Furthermore, mice carrying liver-specific heterozygous and homozygous Fbxw7 R468C alleles cooperated with an oncogenic Kras mutation to exhibit bile duct hyperplasia within 8 months of birth and cholangiocarcinoma-like lesions within 8 weeks of birth, respectively. In addition, the substrates affected by the mutant Fbxw7 differed between the embryos, embryonic fibroblasts, and adult liver. This novel conditional knockin Fbxw7 R468C line should be useful to gain a more profound understanding of carcinogenesis associated with mutation of FBXW7.


Involvement of NMDAR2A tyrosine phosphorylation in depression-related behaviour.

  • Sachiko Taniguchi‎ et al.
  • The EMBO journal‎
  • 2009‎

Major depressive and bipolar disorders are serious illnesses that affect millions of people. Growing evidence implicates glutamate signalling in depression, though the molecular mechanism by which glutamate signalling regulates depression-related behaviour remains unknown. In this study, we provide evidence suggesting that tyrosine phosphorylation of the NMDA receptor, an ionotropic glutamate receptor, contributes to depression-related behaviour. The NR2A subunit of the NMDA receptor is tyrosine-phosphorylated, with Tyr 1325 as its one of the major phosphorylation site. We have generated mice expressing mutant NR2A with a Tyr-1325-Phe mutation to prevent the phosphorylation of this site in vivo. The homozygous knock-in mice show antidepressant-like behaviour in the tail suspension test and in the forced swim test. In the striatum of the knock-in mice, DARPP-32 phosphorylation at Thr 34, which is important for the regulation of depression-related behaviour, is increased. We also show that the Tyr 1325 phosphorylation site is required for Src-induced potentiation of the NMDA receptor channel in the striatum. These data argue that Tyr 1325 phosphorylation regulates NMDA receptor channel properties and the NMDA receptor-mediated downstream signalling to modulate depression-related behaviour.


CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis.

  • Masanori A Murayama‎ et al.
  • Nature communications‎
  • 2015‎

The complement system is important for the host defence against infection as well as for the development of inflammatory diseases. Here we show that C1q/TNF-related protein 6 (CTRP6; gene symbol C1qtnf6) expression is elevated in mouse rheumatoid arthritis (RA) models. C1qtnf6(-/-) mice are highly susceptible to induced arthritis due to enhanced complement activation, whereas C1qtnf6-transgenic mice are refractory. The Arthus reaction and the development of experimental autoimmune encephalomyelitis are also enhanced in C1qtnf6(-/-) mice and C1qtnf6(-/-) embryos are semi-lethal. We find that CTRP6 specifically suppresses the alternative pathway of the complement system by competing with factor B for C3(H2O) binding. Furthermore, treatment of arthritis-induced mice with intra-articular injection of recombinant human CTRP6 cures the arthritis. CTRP6 is expressed in human synoviocytes, and CTRP6 levels are increased in RA patients. These results indicate that CTRP6 is an endogenous complement regulator and could be used for the treatment of complement-mediated diseases.


Keyhole limpet hemocyanin induces innate immunity via Syk and Erk phosphorylation.

  • Kyoko Yasuda‎ et al.
  • EXCLI journal‎
  • 2016‎

Hemocyanin is an extracellular respiratory protein containing copper in hemolymph of invertebrates, such as Mollusk and Arthropod. Keyhole limpet hemocyanin (KLH) is one of hemocyanins and has many years of experience for vaccine developments and immunological studies in mammals including human. However, the association between KLH and the immune systems, especially the innate immune systems, remains poorly understood. The aim of this study is to clarify the direct effects of KLH on the innate immune systems. KLH activated an inflammation-related transcription factor NF-κB as much as lipopolysaccharide (LPS) in a human monocytic leukemia THP-1 reporter cell line. We have found that the KLH-induced NF-κB activation is partially involved in a spleen tyrosine kinase (Syk) pathway. We have also successfully revealed that an extracellular signal-regulated kinase (Erk), a member of mitogen-activated protein kinases, is located in an upstream of NF-κB activation induced by KLH. Furthermore, a Syk phosphorylation inhibitor partially suppressed the Erk activation in KLH-stimulated THP-1. These results suggest that both Syk and Erk associate with the KLH-induced NF-κB activation in the human monocyte.


A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens.

  • Michinaga Ogawa‎ et al.
  • Cell host & microbe‎
  • 2011‎

Selective autophagy of bacterial pathogens represents a host innate immune mechanism. Selective autophagy has been characterized on the basis of distinct cargo receptors but the mechanisms by which different cargo receptors are targeted for autophagic degradation remain unclear. In this study we identified a highly conserved Tectonin domain-containing protein, Tecpr1, as an Atg5 binding partner that colocalized with Atg5 at Shigella-containing phagophores. Tecpr1 activity is necessary for efficient autophagic targeting of bacteria, but has no effect on rapamycin- or starvation-induced canonical autophagy. Tecpr1 interacts with WIPI-2, a yeast Atg18 homolog and PI(3)P-interacting protein required for phagophore formation, and they colocalize to phagophores. Although Tecpr1-deficient mice appear normal, Tecpr1-deficient MEFs were defective for selective autophagy and supported increased intracellular multiplication of Shigella. Further, depolarized mitochondria and misfolded protein aggregates accumulated in the Tecpr1-knockout MEFs. Thus, we identify a Tecpr1-dependent pathway as important in targeting bacterial pathogens for selective autophagy.


Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans.

  • Shinobu Saijo‎ et al.
  • Immunity‎
  • 2010‎

Dectin-2 (gene symbol Clec4n) is a C-type lectin expressed by dendritic cells (DCs) and macrophages. However, its functional roles and signaling mechanisms remain to be elucidated. Here, we generated Clec4n(-/-) mice and showed that this molecule is important for host defense against Candida albicans (C. albicans). Clec4n(-/-) DCs had virtually no fungal alpha-mannan-induced cytokine production. Dectin-2 signaling induced cytokines through an FcRgamma chain and Syk-CARD9-NF-kappaB-dependent signaling pathway without involvement of MAP kinases. The yeast form of C. albicans induced interleukin-1beta (IL-1beta) and IL-23 secretion in a Dectin-2-dependent manner. In contrast, cytokine production induced by the hyphal form was only partially dependent on this lectin. Both yeast and hyphae induced Th17 cell differentiation, in which Dectin-2, but not Dectin-1, was mainly involved. Because IL-17A-deficient mice were highly susceptible to systemic candida infection, this study suggests that Dectin-2 is important in host defense against C. albicans by inducing Th17 cell differentiation.


Kid-mediated chromosome compaction ensures proper nuclear envelope formation.

  • Miho Ohsugi‎ et al.
  • Cell‎
  • 2008‎

Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.


Genome sequencing and annotation of Aeromonas veronii strain Ae52, a multidrug-resistant isolate from septicaemic gold fish (Carassius auratus) in Sri Lanka.

  • S S S De S Jagoda‎ et al.
  • Genomics data‎
  • 2017‎

Here we report the draft genome sequence and annotation of A. veronii strain Ae52 isolated from the kidney of a morbund, septicaemic gold fish (Carassius auratus) in Sri Lanka. This clinical isolate showed resistance to multiple antimicrobials; amoxicillin, neomycin, trimethoprim-sulphonamide, chloramphenicol, tetracycline, enrofloxacin, erythromycin and nitrofurantoin. The size of the draft genome is 4.56 Mbp with 58.66% of G + C content consisting 4328 coding sequences. It harbors a repertoire of putative antibiotic resistant determinants that explains the genetic basis of its resistance to various classes of antibiotics. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession numbers BDGY01000001-BDGY01000080.


The Philippines stingless bee propolis promotes hair growth through activation of Wnt/β-catenin signaling pathway.

  • Yulan Tang‎ et al.
  • Experimental animals‎
  • 2023‎

Although hair loss is not a horrible disease, it sometimes reduces the patients' quality of life (QOL) and increases their mental stress. Currently, there is no effective treatment for hair loss. It is known that honeybee propolis has various biological activities, including stimulating the proliferation of hair matrix keratinocytes. However, little is known with the hair promoting activity of stingless bee propolis. Hence, this study investigates the hair growth-promoting activity of Philippines stingless bee propolis extract and the underlying a molecular mechanism of promoting hair growth. For the evaluation of hair growth stimulating activity, 99.5% ethanolic extract of Philippines stingless bee propolis is examined using the simple shaving model in C57BL/6N mice. Melaninization of dorsal skin and histological analysis of hair follicles (HFs) revealed that propolis promotes hair growth by stimulating HFs development. The expression of mRNA (Wnt3a, Ctnnb1/β-catenin, Lef1, and Bmp2) and protein (WNT3A and β-catenin) of selected Wnt/β-catenin associated genes explains Philippines stingless bee propolis promoting HFs development by activating Wnt/β-catenin signaling pathway. These results suggest that the treatment of propolis strongly promotes hair growth by stimulating the development of HFs via activation of Wnt/β-catenin signaling pathway. This further indicates the potential of Philippines stingless bee propolis as a novel promising agricultural product for hair growth.


A Vaspin-HSPA1L complex protects proximal tubular cells from organelle stress in diabetic kidney disease.

  • Atsuko Nakatsuka‎ et al.
  • Communications biology‎
  • 2021‎

Proximal tubular cells (PTCs) are crucial for maintaining renal homeostasis, and tubular injuries contribute to progression of diabetic kidney disease (DKD). However, the roles of visceral adipose tissue-derived serine protease inhibitor (vaspin) in the development of DKD is not known. We found vaspin maintains PTCs through ameliorating ER stress, autophagy impairment, and lysosome dysfunction in DKD. Vaspin-/- obese mice showed enlarged and leaky lysosomes in PTCs associated with increased apoptosis, and these abnormalities were also observed in the patients with DKD. During internalization into PTCs, vaspin formed a complex with heat shock protein family A (Hsp70) member 1 like (HSPA1L) as well as 78 kDa glucose-regulated protein (GRP78). Both vaspin-partners bind to clathrin heavy chain and involve in the endocytosis. Notably, albumin-overload enhanced extracellular release of HSPA1L and overexpression of HSPA1L dissolved organelle stresses, especially autophagy impairment. Thus, vapsin/HSPA1L-mediated pathways play critical roles in maintaining organellar function of PTCs in DKD.


A Novel Analysis of the Peptide Terminome Characterizes Dynamics of Proteolytic Regulation in Vertebrate Skeletal Muscle Under Severe Stress.

  • Yuri Kominami‎ et al.
  • Proteomes‎
  • 2019‎

In healthy cells, proteolysis is orderly executed to maintain basal homeostasis and normal physiology. Dyscontrol in proteolysis under severe stress condition induces cell death, but the dynamics of proteolytic regulation towards the critical phase remain unclear. Teleosts have been suggested an alternative model for the study of proteolysis under severe stress. In this study, horse mackerel (Trachurus japonicus) was used and exacerbated under severe stress conditions due to air exposure. Although the complete genome for T. japonicus is not available, a transcriptomic analysis was performed to construct a reference protein database, and the expression of 72 proteases were confirmed. Quantitative peptidomic analysis revealed that proteins related to glycolysis and muscle contraction systems were highly cleaved into peptides immediately under the severe stress. Novel analysis of the peptide terminome using a multiple linear regression model demonstrated profiles of proteolysis under severe stress. The results indicated a phase transition towards dyscontrol in proteolysis in T. japonicus skeletal muscle during air exposure. Our novel approach will aid in investigating the dynamics of proteolytic regulation in skeletal muscle of non-model vertebrates.


Ferulic Acid Promotes Hypertrophic Growth of Fast Skeletal Muscle in Zebrafish Model.

  • Ya Wen‎ et al.
  • Nutrients‎
  • 2017‎

As a widely distributed and natural existing antioxidant, ferulic acid and its functions have been extensively studied in recent decades. In the present study, hypertrophic growth of fast skeletal myofibers was observed in adult zebrafish after ferulic acid administration for 30 days, being reflected in increased body weight, body mass index (BMI), and muscle mass, along with an enlarged cross-sectional area of myofibers. qRT-PCR analyses demonstrated the up-regulation of relative mRNA expression levels of myogenic transcriptional factors (MyoD, myogenin and serum response factor (SRF)) and their target genes encoding sarcomeric unit proteins involved in muscular hypertrophy (skeletal alpha-actin, myosin heavy chain, tropomyosin, and troponin I). Western blot analyses detected a higher phosphorylated level of zTOR (zebrafish target of rapamycin), p70S6K, and 4E-BP1, which suggests an enhanced translation efficiency and protein synthesis capacity of fast skeletal muscle myofibers. These changes in transcription and translation finally converge and lead to higher protein contents in myofibers, as confirmed by elevated levels of myosin heavy chain (MyHC), and an increased muscle mass. To the best of our knowledge, these findings have been reported for the first time in vivo and suggest potential applications of ferulic acid as functional food additives and dietary supplements owing to its ability to promote muscle growth.


The Effects of Brown Algae-Derived Monosaccharide L-Fucose on Lipid Metabolism in C57BL/6J Obese Mice.

  • Xiao Yuan‎ et al.
  • Nutrients‎
  • 2020‎

Obesity is a global public health problem and a risk factor for several metabolic disorders as well as cancer. In this study, we investigated the effects of L-fucose on lipid metabolism through chronic and acute in vivo experiments in mice. In the chronic test, mice were fed a high-calorie diet (HCD) containing 0.0001%, 0.001%, 0.01%, and 0.1% L-fucose for one month. The L-fucose supplementation inhibited body weight and visceral fat mass gain in HCD-fed mice. The results of the acute test showed that L-fucose increased the ratio of serum high molecular weight adiponectin and enhanced glucose and lipid catabolism. Furthermore, L-fucose also decreased the expression of adipogenic genes (peroxisome proliferator-activated receptor γ and cluster of differentiation 36). In conclusion, this study provides a new approach to combat obesity and the related diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: