Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Visualizing the appearance and disappearance of the attractor of differentiation using Raman spectral imaging.

  • Taro Ichimura‎ et al.
  • Scientific reports‎
  • 2015‎

Using Raman spectral imaging, we visualized the cell state transition during differentiation and constructed hypothetical potential landscapes for attractors of cellular states on a state space composed of parameters related to the shape of the Raman spectra. As models of differentiation, we used the myogenic C2C12 cell line and mouse embryonic stem cells. Raman spectral imaging can validate the amounts and locations of multiple cellular components that describe the cell state such as proteins, nucleic acids, and lipids; thus, it can report the state of a single cell. Herein, we visualized the cell state transition during differentiation using Raman spectral imaging of cell nuclei in combination with principal component analysis. During differentiation, cell populations with a seemingly homogeneous cell state before differentiation showed heterogeneity at the early stage of differentiation. At later differentiation stages, the cells returned to a homogeneous cell state that was different from the undifferentiated state. Thus, Raman spectral imaging enables us to illustrate the disappearance and reappearance of an attractor in a differentiation landscape, where cells stochastically fluctuate between states at the early stage of differentiation.


CRISPR-mediated activation of endogenous BST-2/tetherin expression inhibits wild-type HIV-1 production.

  • Yanzhao Zhang‎ et al.
  • Scientific reports‎
  • 2019‎

The CRISPR technology not only can knock out target genes by using the RNA-guided Cas9 nuclease but also can activate their expression when a nuclease-deficient Cas9 (dCas9) is employed. Using the latter function, we here show the effect of the CRISPR-mediated pinpoint activation of endogenous expression of BST-2 (also known as tetherin), a virus restriction factor with a broad antiviral spectrum. Single-guide RNA (sgRNA) sequences targeting the BST-2 promoter were selected by promoter assays. Potential sgRNAs and dCas9 fused to the VP64 transactivation domain, along with an accessory transcriptional activator complex, were introduced into cells by lentiviral transduction. Increased expression of BST-2 mRNA in transduced cells was confirmed by real-time RT-PCR. Cells in which BST-2 expression was highly enhanced showed the effective inhibition of HIV-1 production and replication even in the presence of the viral antagonist Vpu against BST-2. These findings confirm that the physiological stoichiometry between host restriction factors and viral antagonists may determine the outcome of the battle with viruses.


Single cell analysis reveals a biophysical aspect of collective cell-state transition in embryonic stem cell differentiation.

  • Kazuko Okamoto‎ et al.
  • Scientific reports‎
  • 2018‎

In the stem cell research field, the molecular regulatory network used to define cellular states has been extensively studied, however, the general driving force guiding the collective state dynamics remains to be identified from biophysical aspects. Here we monitored the time-development of the cell-state transition at the single-cell and colony levels, simultaneously, during the early differentiation process in mouse embryonic stem cells. Our quantitative analyses revealed that cellular heterogeneity was a result of spontaneous fluctuation of cellular state and cell-cell cooperativity. We considered that the cell state is like a ball fluctuating on a potential landscape, and found that the cooperativity affects the fluctuation. Importantly, the cooperativity temporarily decreased and increased in the intermediate state of cell differentiation, leading to cell-state transition in unison. This process can be explained using the mathematical equation of flashing-ratchet behaviour, which suggests that a general mechanism is driving the collective decision-making of stem cells.


Visualizing cell state transition using Raman spectroscopy.

  • Taro Ichimura‎ et al.
  • PloS one‎
  • 2014‎

System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC) differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA), which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.


Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

  • Akira Ito‎ et al.
  • Scientific reports‎
  • 2014‎

Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.


NEDD4-family E3 ligase dysfunction due to PKHD1/Pkhd1 defects suggests a mechanistic model for ARPKD pathobiology.

  • Jun-Ya Kaimori‎ et al.
  • Scientific reports‎
  • 2017‎

Autosomal recessive polycystic kidney disease (ARPKD) is an important childhood nephropathy, occurring 1 in 20,000 live births. The major clinical phenotypes are expressed in the kidney with dilatation of the collecting ducts, systemic hypertension, and progressive renal insufficiency, and in the liver with biliary dysgenesis, portal tract fibrosis, and portal hypertension. The systemic hypertension has been attributed to enhanced distal sodium reabsorption in the kidney, the structural defects have been ascribed to altered cellular morphology, and fibrosis to increased TGF-β signaling in the kidney and biliary tract, respectively. The pathogenic mechanisms underlying these abnormalities have not been determined. In the current report, we find that disrupting PKHD1 results in altered sub-cellular localization and function of the C2-WWW-HECT domain E3 family of ligases regulating these processes. We also demonstrate altered activity of RhoA and increased TGF-β signaling and ENaC activity. Linking these phenomena, we found that vesicles containing the PKHD1/Pkhd1 gene product, FPC, also contain the NEDD4 ubiquitin ligase interacting protein, NDFIP2, which interacts with multiple members of the C2-WWW-HECT domain E3 family of ligases. Our results provide a mechanistic explanation for both the cellular effects and in vivo phenotypic abnormalities in mice and humans that result from Pkhd1/PKHD1 mutation.


The use of a genetically encoded molecular crowding sensor in various biological phenomena.

  • Hiroaki Machiyama‎ et al.
  • Biophysics and physicobiology‎
  • 2017‎

We evaluated usability of a previously developed genetically encoded molecular crowding sensor in various biological phenomena. Molecular crowding refers to intracellular regions that are occupied more by proteins and nucleotides than by water molecules and is thought to have a strong effect on protein function. To evaluate intracellular molecular crowding, usually the diffusion coefficient of a probe is used because it is related to mobility of the surrounding molecular crowding agents. Recently, genetically encoded molecular crowding sensors based on Förster resonance energy transfer were reported. In the present study, to evaluate the usability of a genetically encoded molecular crowding sensor, molecular crowding was monitored during several biological events. Changes in molecular crowding during stem cell differentiation, cell division, and focal adhesion development and difference in molecular crowding in filopodia locations were examined. The results show usefulness of the genetically encoded molecular crowding sensor for understanding the biological phenomena relating to molecular crowding.


A novel c-Src recruitment pathway from the cytosol to focal adhesions.

  • Hiroaki Machiyama‎ et al.
  • FEBS letters‎
  • 2017‎

The role of myristoylation in the localization and catalytic activity of Src at focal adhesions was investigated by live-cell imaging and site-directed mutagenesis. Although the majority of activated Src molecules are localized at focal adhesions, it is unclear how activated Src molecules are recruited to focal adhesions. Because Src is activated at the cell membrane, translocation of Src to cell membranes is considered to be essential for its recruitment to focal adhesions. Membrane-targeting-deficient Src mutant SrcG2A localizes at focal adhesions, indicating direct recruitment of Src from cytosol to focal adhesions. Furthermore, directly recruited Src molecules are shown to enhance paxillin dynamics at focal adhesions. These results reveal that the regulation of Src activation and translocation is more complex than previously suggested.


Analysis of post-lysosomal compartments.

  • Yuko Hirota‎ et al.
  • Biochemical and biophysical research communications‎
  • 2004‎

Lysosomes are acidic intracellular compartments and are regarded as degradative and the end point, of the endocytic pathway. Here we provide evidence for the generation of acid hydrolase poor and non-acidic post-lysosomal compartments in NRK cells that have accumulated non-digestible macromolecules, Texas red-dextran (TR-Dex), within lysosomes. When TR-Dex was fed to the cells for 6h, most of the internalized TR-Dex colocalized with a lysosomal enzyme, cathepsin D. With an increase in the chase period, however, the internalized TR-Dex gradually accumulated in cathepsin D-negative vesicles. These vesicles were positive for a lysosomal membrane protein, LGP85, and their formation was inhibited by treatment of the cells with U18666A, which impairs membrane transport out of late endosomal/lysosomal compartments, thereby suggesting that the vesicles are derived from lysosomes. Interestingly, these compartments are non-acidic as judged for the DAMP staining. The results, therefore, suggest that the excess accumulation of non-digestible macromolecules within lysosomes induces the formation of acid hydrolase poor and non-acidic post-lysosomal compartments. The fact that treatment of the cells with lysosomotropic amines or a microtubule-depolymerization agent resulted in extensive colocalization of TR-Dex with cathepsin D further indicates that the formation of the post-lysosomal compartments depends on the lysosomal acidification and microtubule organization. Furthermore, these results suggest bi-directional membrane transport between lysosomes and the post-lysosomal compartments, which implies that the latter are not resting compartments.


Protein expression guided chemical profiling of living cells by the simultaneous observation of Raman scattering and anti-Stokes fluorescence emission.

  • Liang-da Chiu‎ et al.
  • Scientific reports‎
  • 2017‎

Our current understanding of molecular biology provides a clear picture of how the genome, transcriptome and proteome regulate each other, but how the chemical environment of the cell plays a role in cellular regulation remains much to be studied. Here we show an imaging method using hybrid fluorescence-Raman microscopy that measures the chemical micro-environment associated with protein expression patterns in a living cell. Simultaneous detection of fluorescence and Raman signals, realised by spectrally separating the two modes through the single photon anti-Stokes fluorescence emission of fluorescent proteins, enables the accurate correlation of the chemical fingerprint of a specimen to its physiological state. Subsequent experiments revealed the slight chemical differences that enabled the chemical profiling of mouse embryonic stem cells with and without Oct4 expression. Furthermore, using the fluorescent probe as localisation guide, we successfully analysed the detailed chemical content of cell nucleus and Golgi body. The technique can be further applied to a wide range of biomedical studies for the better understanding of chemical events during biological processes.


A GM1b/asialo-GM1 oligosaccharide-binding R-type lectin from purplish bifurcate mussels Mytilisepta virgata and its effect on MAP kinases.

  • Yuki Fujii‎ et al.
  • The FEBS journal‎
  • 2020‎

A 15-kDa lectin, termed SeviL, was isolated from Mytilisepta virgata (purplish bifurcate mussel). SeviL forms a noncovalent dimer that binds strongly to ganglio-series GM1b oligosaccharide (Neu5Acɑ2-3Galβ1-3GalNAcβ1-4Galβ1-4Glc) and its precursor, asialo-GM1 (Galβ1-3GalNAcβ1-4Galβ1-4Glc). SeviL also interacts weakly with the glycan moiety of SSEA-4 hexaose (Neu5Acα2-3Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glc). A partial protein sequence of the lectin was determined by mass spectrometry, and the complete sequence was identified from transcriptomic analysis. SeviL, consisting of 129 amino acids, was classified as an R(icin B)-type lectin, based on the presence of the QxW motif characteristic of this fold. SeviL mRNA is highly expressed in gills and, in particular, mantle rim tissues. Orthologue sequences were identified in other species of the family Mytilidae, including Mytilus galloprovincialis, from which lectin MytiLec-1 was isolated and characterized in our previous studies. Thus, mytilid species contain lectins belonging to at least two distinct families (R-type lectins and mytilectins) that have a common β-trefoil fold structure but differing glycan-binding specificities. SeviL displayed notable cytotoxic (apoptotic) effects against various cultured cell lines (human breast, ovarian, and colonic cancer; dog kidney) that possess asialo-GM1 oligosaccharide at the cell surface. This cytotoxic effect was inhibited by the presence of anti-asialo-GM1 oligosaccharide antibodies. With HeLa ovarian cancer cells, SeviL showed dose- and time-dependent activation of kinase MKK3/6, p38 MAPK, and caspase-3/9. The transduction pathways activated by SeviL via the glycosphingolipid oligosaccharide were triggered apoptosis. DATABASE: Nucleotide sequence data have been deposited in the GenBank database under accession numbers MK434191, MK434192, MK434193, MK434194, MK434195, MK434196, MK434197, MK434198, MK434199, MK434200, and MK434201.


Substrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression.

  • Takahiro Ebata‎ et al.
  • BioMed research international‎
  • 2017‎

The physical properties of the extracellular matrix (ECM), such as stiffness, are involved in the determination of the characteristics of cancer cells, including chemotherapy sensitivity. Resistance to chemotherapy is often linked to dysfunction of tumor suppressor p53; however, it remains elusive whether the ECM microenvironment interferes with p53 activation in cancer cells. Here, we show that, in MCF-7 breast cancer cells, extracellular stiffness influences p53 activation induced by the antitumor drug doxorubicin. Cell growth inhibition by doxorubicin was increased in response to ECM rigidity in a p53-dependent manner. The expression of Rho-associated coiled coil-containing protein kinase (ROCK) 2, which induces the activation of myosin II, was significantly higher when cells were cultured on stiffer ECM substrates. Knockdown of ROCK2 expression or pharmacological inhibition of ROCK decreased doxorubicin-induced p53 activation. Our results suggest that a soft ECM causes downregulation of ROCK2 expression, which drives resistance to chemotherapy by repressing p53 activation.


Pressure-induced changes on the morphology and gene expression in mammalian cells.

  • Kazuko Okamoto‎ et al.
  • Biology open‎
  • 2021‎

We evaluated the effect of high hydrostatic pressure on mouse embryonic fibroblasts (MEFs) and mouse embryonic stem (ES) cells. Hydrostatic pressures of 15, 30, 60, and 90 MPa were applied for 10 min, and changes in gene expression were evaluated. Among genes related to mechanical stimuli, death-associated protein 3 was upregulated in MEF subjected to 90 MPa pressure; however, other genes known to be upregulated by mechanical stimuli did not change significantly. Genes related to cell differentiation did not show a large change in expression. On the other hand, genes related to pluripotency, such as Oct4 and Sox2, showed a twofold increase in expression upon application of 60 MPa hydrostatic pressure for 10 min. Although these changes did not persist after overnight culture, cells that were pressurized to 15 MPa showed an increase in pluripotency genes after overnight culture. When mouse ES cells were pressurized, they also showed an increase in the expression of pluripotency genes. These results show that hydrostatic pressure activates pluripotency genes in mammalian cells. This article has an associated First Person interview with the first author of the paper.


Application of the Dynamical Network Biomarker Theory to Raman Spectra.

  • Takayuki Haruki‎ et al.
  • Biomolecules‎
  • 2022‎

The dynamical network biomarker (DNB) theory detects the early warning signals of state transitions utilizing fluctuations in and correlations between variables in complex systems. Although the DNB theory has been applied to gene expression in several diseases, destructive testing by microarrays is a critical issue. Therefore, other biological information obtained by non-destructive testing is desirable; one such piece of information is Raman spectra measured by Raman spectroscopy. Raman spectroscopy is a powerful tool in life sciences and many other fields that enable the label-free non-invasive imaging of live cells and tissues along with detailed molecular fingerprints. Naïve and activated T cells have recently been successfully distinguished from each other using Raman spectroscopy without labeling. In the present study, we applied the DNB theory to Raman spectra of T cell activation as a model case. The dataset consisted of Raman spectra of the T cell activation process observed at 0 (naïve T cells), 2, 6, 12, 24 and 48 h (fully activated T cells). In the DNB analysis, the F-test and hierarchical clustering were used to detect the transition state and identify DNB Raman shifts. We successfully detected the transition state at 6 h and related DNB Raman shifts during the T cell activation process. The present results suggest novel applications of the DNB theory to Raman spectra ranging from fundamental research on cellular mechanisms to clinical examinations.


The structure of SeviL, a GM1b/asialo-GM1 binding R-type lectin from the mussel Mytilisepta virgata.

  • Kenichi Kamata‎ et al.
  • Scientific reports‎
  • 2020‎

SeviL is a recently isolated lectin found to bind to the linear saccharides of the ganglioside GM1b (Neu5Ac[Formula: see text](2-3)Gal[Formula: see text](1-3)GalNAc[Formula: see text](1-4)Gal[Formula: see text](1-4)Glc) and its precursor, asialo-GM1 (Gal[Formula: see text](1-3)GalNAc[Formula: see text](1-4)Gal[Formula: see text](1-4)Glc). The crystal structures of recombinant SeviL have been determined in the presence and absence of ligand. The protein belongs to the [Formula: see text]-trefoil family, but shows only weak sequence similarity to known structures. SeviL forms a dimer in solution, with one binding site per subunit, close to the subunit interface. Molecular details of glycan recognition by SeviL in solution were analysed by ligand- and protein-based NMR techniques as well as ligand binding assays. SeviL shows no interaction with GM1 due to steric hindrance with the sialic acid branch that is absent from GM1b. This unusual specificity makes SeviL of great interest for the detection and control of certain cancer cells, and cells of the immune system, that display asialo-GM1.


Raman spectral signature reflects transcriptomic features of antibiotic resistance in Escherichia coli.

  • Arno Germond‎ et al.
  • Communications biology‎
  • 2018‎

To be able to predict antibiotic resistance in bacteria from fast label-free microscopic observations would benefit a broad range of applications in the biological and biomedical fields. Here, we demonstrate the utility of label-free Raman spectroscopy in monitoring the type of resistance and the mode of action of acquired resistance in a bacterial population of Escherichia coli, in the absence of antibiotics. Our findings are reproducible. Moreover, we identified spectral regions that best predicted the modes of action and explored whether the Raman signatures could be linked to the genetic basis of acquired resistance. Spectral peak intensities significantly correlated (False Discovery Rate, p < 0.05) with the gene expression of some genes contributing to antibiotic resistance genes. These results suggest that the acquisition of antibiotic resistance leads to broad metabolic effects reflected through Raman spectral signatures and gene expression changes, hinting at a possible relation between these two layers of complementary information.


Membrane-Associated Ubiquitin Ligase RING Finger Protein 152 Orchestrates Melanogenesis via Tyrosinase Ubiquitination.

  • Ryota Ueda‎ et al.
  • Membranes‎
  • 2024‎

Lysosomal degradation of tyrosinase, a pivotal enzyme in melanin synthesis, negatively impacts melanogenesis in melanocytes. Nevertheless, the precise molecular mechanisms by which lysosomes target tyrosinase have remained elusive. Here, we identify RING (Really Interesting New Gene) finger protein 152 (RNF152) as a membrane-associated ubiquitin ligase specifically targeting tyrosinase for the first time, utilizing AlphaScreen technology. We observed that modulating RNF152 levels in B16 cells, either via overexpression or siRNA knockdown, resulted in decreased or increased levels of both tyrosinase and melanin, respectively. Notably, RNF152 and tyrosinase co-localized at the trans-Golgi network (TGN). However, upon treatment with lysosomal inhibitors, both proteins appeared in the lysosomes, indicating that tyrosinase undergoes RNF152-mediated lysosomal degradation. Through ubiquitination assays, we found the indispensable roles of both the RING and transmembrane (TM) domains of RNF152 in facilitating tyrosinase ubiquitination. In summary, our findings underscore RNF152 as a tyrosinase-specific ubiquitin ligase essential for regulating melanogenesis in melanocytes.


Non-label immune cell state prediction using Raman spectroscopy.

  • Taro Ichimura‎ et al.
  • Scientific reports‎
  • 2016‎

The acquired immune system, mainly composed of T and B lymphocytes, plays a key role in protecting the host from infection. It is important and technically challenging to identify cell types and their activation status in living and intact immune cells, without staining or killing the cells. Using Raman spectroscopy, we succeeded in discriminating between living T cells and B cells, and visualized the activation status of living T cells without labeling. Although the Raman spectra of T cells and B cells were similar, they could be distinguished by discriminant analysis of the principal components. Raman spectra of activated T cells with anti-CD3 and anti-CD28 antibodies largely differed compared to that of naïve T cells, enabling the prediction of T cell activation status at a single cell level. Our analysis revealed that the spectra of individual T cells gradually change from the pattern of naïve T cells to that of activated T cells during the first 24 h of activation, indicating that changes in Raman spectra reflect slow changes rather than rapid changes in cell state during activation. Our results indicate that the Raman spectrum enables the detection of dynamic changes in individual cell state scattered in a heterogeneous population.


Distinct modulated pupil function system for real-time imaging of living cells.

  • Tomonobu M Watanabe‎ et al.
  • PloS one‎
  • 2012‎

Optical microscopy is one of the most contributive tools for cell biology in the past decades. Many microscopic techniques with various functions have been developed to date, i.e., phase contrast microscopy, differential interference contrast (DIC) microscopy, confocal microscopy, two photon microscopy, superresolution microscopy, etc. However, person who is in charge of an experiment has to select one of the several microscopic techniques to achieve an experimental goal, which makes the biological assay time-consuming and expensive. To solve this problem, we have developed a microscopic system with various functions in one instrument based on the optical Fourier transformation with a lens system for detection while focusing on applicability and user-friendliness for biology. The present instrument can arbitrarily modulate the pupil function with a micro mirror array on the Fourier plane of the optical pathway for detection. We named the present instrument DiMPS (Distinct optical Modulated Pupil function System). The DiMPS is compatible with conventional fluorescent probes and illumination equipment, and gives us a Fourier-filtered image, a pseudo-relief image, and a deep focus depth. Furthermore, DiMPS achieved a resolution enhancement (pseudo-superresolution) of 110 nm through the subtraction of two images whose pupil functions are independently modulated. In maximum, the spatial and temporal resolution was improved to 120 nm and 2 ms, respectively. Since the DiMPS is based on relay optics, it can be easily combined with another microscopic instrument such as confocal microscope, and provides a method for multi-color pseudo-superresolution. Thus, the DiMPS shows great promise as a flexible optical microscopy technique in biological research fields.


Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes.

  • Hideaki Fujita‎ et al.
  • Experimental cell research‎
  • 2007‎

The assembly of sarcomeres, the smallest contractile units in striated muscle, is a complex and highly coordinated process that relies on spatio-temporal organization of sarcomeric proteins, a process requiring spontaneous Ca(2+) transients. To investigate the relationship between Ca(2+) transients and sarcomere assembly in C2C12 myotubes, we employed electric pulse stimulation (EPS), which allows the frequency of Ca(2+) transients to be manipulated. We monitored contractile activity as a means of evaluating functional sarcomere establishment using the differential image subtraction (DIS) method. C2C12 myotubes initially displayed no contractility with EPS, due to a lack of sarcomere architecture. However, C2C12 myotubes showed remarkable contractile activity with EPS-induced repetitive Ca(2+) transients (1 Hz) within only 2 h. This activity was concurrent with the development of sarcomere structure. Importantly, the period required for the acquisition of contractile activity in response to excitation was dependent upon the frequency of Ca(2+) oscillations, but a sustained increase in intracellular Ca(2+) (not oscillatory) by high-frequency EPS (10 Hz) was incapable of conferring either contractility or sarcomere assembly on the myotubes. The EPS-facilitated de novo functional sarcomere assembly appeared to require calpain-mediated proteolysis. In addition, modulation of integrin signals, by adding collagen IV or RGD-peptide, significantly affected the EPS-induced development of contractility. Taken together, these observations indicate that the frequency of the Ca(2+) oscillation determines the time required to establish functionally active sarcomere assembly and also suggest that the Ca(2+) oscillatory signal may be decoded through reorganization of the integrin-cytoskeletal protein complex via calpain-mediated proteolysis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: