Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Crystal structures of human neuropeptide Y (NPY) and peptide YY (PYY).

  • David B Langley‎ et al.
  • Neuropeptides‎
  • 2022‎

Neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) form the evolutionarily conserved pancreatic polypeptide family. While the fold is widely utilized in nature, crystal structures remain elusive, particularly for the human forms, with only the structure of a distant avian form of PP reported. Here we utilize a crystallization chaperone (antibody Fab fragment), specifically recognizing the amidated peptide termini, to solve the structures of human NPY and human PYY. Intriguingly, and despite limited sequence identity (~50%), the structure of human PYY closely resembles that of avian PP, highlighting the broad structural conservation of the fold throughout evolution. Specifically, the PYY structure is characterized by a C-terminal amidated α-helix, preceded by a backfolded poly-proline N-terminus, with the termini in close proximity to each other. In contrast, in the structure of human NPY the N-terminal component is disordered, while the helical component of the peptide is observed in a four-helix bundle type arrangement, consistent with a propensity for multimerization suggested by NMR studies.


Ninjin'yoeito, a herbal medicine, enhances glucose tolerance in mice.

  • Lei Zhang‎ et al.
  • Neuropeptides‎
  • 2021‎

The prevalence of Type 2 diabetes increases under conditions of obesity but also due to aging. While a variety of treatment options are being explored there are still many unanswered questions about the underlying mechanisms for the aetiology and progression of this illness. Here we show that pre-treatment with Ninjin'yoeito (NYT), a herbal medicine composed of 12 different ingrediencies, before a glucose challenge results in significantly improved glucose tolerance. This occurs in the absence of significant alterations in insulin excursion compared to vehicle treatment, indicating NYT improves insulin responsiveness and/or insulin-independent glucose disposal. Furthermore, we identify Ginseng - one of the 12 ingredients of NYT - as one key component contributing to NYT's effect on glucose clearance. Importantly, lack of Y4 receptor signalling abolishes the positive effects of NYT on glucose tolerance suggesting Y4 receptor-controlled pathways are crucial in mediating this action of NYT. Using c-fos as neuronal activation marker, we show NYT activates the area postrema - a circumventricular organ in the brainstem that expresses high level of Y4 receptors, supporting an involvement of brainstem Y4 signalling in NYT-activated central networks. Together, these data suggest that NYT is a positive influencer of glucose metabolism in insulin-sensitive tissues and the mechanistic actions of NYT include brainstem Y4 circuitries.


Ninjin'yoeito modulates feeding and activity under negative energy balance conditions via the NPY system.

  • Lei Zhang‎ et al.
  • Neuropeptides‎
  • 2021‎

The central and peripheral neuropeptide Y (NPY) system is critically involved in feeding and energy homeostasis control. Disease conditions as well as aging can lead to reduced functionality of the NPY system and boosting it represents a promising option to improve health outcomes in these situations. Here we show that Ninjin-yoeito (NYT), a Japanese kampo medicine comprising twelve herbs, and known to be effective to treat anorexia and frailty, mediates part of its action via NPY/peptide YY (PYY) related pathways. Especially under negative energy homeostasis conditions NYT is able to promote feeding and reduces activity to conserve energy. These effects are in part mediated via signalling through the NPY system since lack of Y4 receptors or PYY leading to modification in these responses highlighting the possibility for combination treatment to improve aging related conditions on energy homeostasis control.


Role of neuropeptide Y (NPY) in the differentiation of Trpm-5-positive olfactory microvillar cells.

  • Kharen L Doyle‎ et al.
  • Neuropeptides‎
  • 2018‎

The mouse olfactory neuroepithelium (ON) is comprised of anatomically distinct populations of cells in separate regions; apical (sustentacular and microvillar), neuronal (olfactory sensory neurons) and basal (horizontal and globose basal cells). The existence of microvillar cells (MVCs) is well documented but their nature and function remains unclear. An important transcription factor for the differentiation of MVCs is Skn-1a, with loss of function of Skn-1a in mice resulting in a complete loss of Trpm-5 expressing MVCs, while olfactory sensory neuron differentiation is normal. Our previous research has shown that neuropeptide Y (NPY) is expressed in MVCs and is important in the neuroproliferation of olfactory precursors. This study showed that following X-ray irradiation of the snout of wildtype mice, which decreases the proliferation of basal precursor cells, the numbers of Trpm-5-positive MVCs is increased at 2 and 5 weeks post-irradiation compared to controls. Skn-1a expression in the ON following X-ray irradiation also increases at 2 weeks post-irradiation in a regionally specific manner matching the expression pattern of Trpm-5-positive MVCs. In parallel, NPYCre knock-in mice were used to examine the expression of Skn-1a following activation of NPY unilaterally in the ON (unilateral nasal irrigation of AAV-NPY-FLEX). These experiments demonstrated that Skn-1a is only expressed when NPY is activated in MVCs. Therefore the expression of NPY is necessary for the transcription factor-mediated differentiation of olfactory MVCs.


The distribution of Neuropeptide FF and Neuropeptide VF in central and peripheral tissues and their role in energy homeostasis control.

  • Julia Koller‎ et al.
  • Neuropeptides‎
  • 2021‎

Neuropeptide FF (NPFF) and Neuropeptide VF (NPVF) are part of the extended RFamide peptide family characterized by their common arginine (R) and amidated phenylalanine (F)-motif at the carboxyl terminus. Both peptides signal through their respective high affinity G-protein coupled receptors, NPFFR2 and NPFFR1, but also show binding affinity for the other receptor due to their sequence similarity. NPFF and NPVF are highly conserved throughout evolution and can be found across the whole animal kingdom. Both have been implicated in a variety of biological mechanisms, including nociception, locomotion, reproduction, and response to pain and stress. However, more recently a new major functional role in the control of energy homeostasis has been discovered. In this article we will summarise the current knowledge on the distribution of NPFF, NPVF, and their receptors in central and peripheral tissues, as well as how this relates to the regulation of food intake and energy balance, which will help to better understand their role in these processes and thus might help finding treatments for impaired energy homeostasis disorders, such as obesity or anorexia.


Temperature dependence of the control of energy homeostasis requires CART signaling.

  • Jackie Lau‎ et al.
  • Neuropeptides‎
  • 2016‎

Cocaine- and amphetamine-regulated transcript (CART) is a key neuropeptide with predominant expression in the hypothalamus central to the regulation of diverse biological processes, including food intake and energy expenditure. While there is considerable information on CART's role in the control of feeding, little is known about its thermoregulatory potential. Here we show the consequences of lack of CART signaling on major parameters of energy homeostasis in CART-/- mice under standard ambient housing (RT, 22°C), which is considered a mild cold exposure for mice, and thermoneutral conditions (TN, 30°C). WT mice kept at RT showed an increase in food intake, energy expenditure, BAT UCP-1 expression, and physical activity compared with TN condition, reflecting the augmented energy demand for thermogenesis at RT. On the molecular level, RT housing led to upregulated mRNA expression of TH, CRH, and TRH at the PVN, while NPY, AgRP and CART mRNA levels in the Arc were downregulated. CART-/- mice displayed elevated adiposity and diminished lean mass across both RT and TN. At RT, CART-/- mice showed unchanged food consumption yet greater body weight gain. In addition, an increase in energy expenditure and heightened BAT thermogenesis marked by UCP-1 protein expression was observed in the CART-/- mice. In contrast, TN-housed CART-/- mice exhibited lower weight gain than WT mice accompanied with pronounced reduction in basal feeding. These findings were correlated with reduced BAT temperature, but unchanged energy expenditure and UCP-1 levels. Interestingly, the respiratory exchange ratio for CART-/- mice, which shifted from lower at RT to higher at TN with respect to WT controls, indicates a transition of relative fuel source preference from fat to carbohydrate in the absence of CART signaling. Taken together, these results demonstrate that CART is a critical regulator of energy expenditure, energy partitioning and utilization dependent on the thermal environment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: