Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

A microfluidic chip for axonal isolation and electrophysiological measurements.

  • Ville Jokinen‎ et al.
  • Journal of neuroscience methods‎
  • 2013‎

A microfluidic chip for culturing neurons and spatially isolating axons from somas is presented for use with visually guided whole-cell electrophysiological measurements. A modular design consisting of detachable and re-sealable layers is used to satisfy the requirements of both long-term neuron culturing as well as electrophysiological measurements. Whole cell patch clamp recordings indicate functional viability of neurons with isolated axons. Fluidic isolation was used to achieve asymmetric lentiviral infection of neurons on a single side reservoir. Neurons were asymmetrically infected with lentiviruses expressing the light-activated cationic channel channelrhodopsin-2. Light-evoked excitatory postsynaptic responses were detected by whole cell recordings of neurons on the uninfected side showing functional synaptic connectivity between the two isolated but axonally connected sides of the device.


Intrastriatally Infused Exogenous CDNF Is Endocytosed and Retrogradely Transported to Substantia Nigra.

  • Kert Mätlik‎ et al.
  • eNeuro‎
  • 2017‎

Cerebral dopamine neurotrophic factor (CDNF) protects the nigrostriatal dopaminergic (DA) neurons in rodent models of Parkinson's disease and restores DA circuitry when delivered after these neurons have begun to degenerate. These DA neurons have been suggested to transport striatal CDNF retrogradely to the substantia nigra (SN). However, in cultured cells the binding and internalization of extracellular CDNF has not been reported. The first aim of this study was to examine the cellular localization and pharmacokinetic properties of recombinant human CDNF (rhCDNF) protein after its infusion into rat brain parenchyma. Second, we aimed to study whether the transport of rhCDNF from the striatum to the SN results from its retrograde transport via DA neurons or from its anterograde transport via striatal GABAergic projection neurons. We show that after intrastriatal infusion, rhCDNF diffuses rapidly and broadly, and is cleared with a half-life of 5.5 h. Confocal microscopy analysis of brain sections at 2 and 6 h after infusion of rhCDNF revealed its widespread unspecific internalization by cortical and striatal neurons, exhibiting different patterns of subcellular rhCDNF distribution. Electron microscopy analysis showed that rhCDNF is present inside the endosomes and multivesicular bodies. In addition, we present data that after intrastriatal infusion the rhCDNF found in the SN is almost exclusively localized to the DA neurons, thus showing that it is retrogradely transported.


CDNF Protein Therapy in Parkinson's Disease.

  • Henri J Huttunen‎ et al.
  • Cell transplantation‎
  • 2019‎

Neurotrophic factors (NTF) are a subgroup of growth factors that promote survival and differentiation of neurons. Due to their neuroprotective and neurorestorative properties, their therapeutic potential has been tested in various neurodegenerative diseases. Bioavailability of NTFs in the target tissue remains a major challenge for NTF-based therapies. Various intracerebral delivery approaches, both protein and gene transfer-based, have been tested with varying outcomes. Three growth factors, glial cell-line derived neurotrophic factor (GDNF), neurturin (NRTN) and platelet-derived growth factor (PDGF-BB) have been tested in clinical trials in Parkinson's disease (PD) during the past 20 years. A new protein can now be added to this list, as cerebral dopamine neurotrophic factor (CDNF) has recently entered clinical trials. Despite their misleading names, CDNF, together with its closest relative mesencephalic astrocyte-derived neurotrophic factor (MANF), form a novel family of unconventional NTF that are both structurally and mechanistically distinct from other growth factors. CDNF and MANF are localized mainly to the lumen of endoplasmic reticulum (ER) and their primary function appears to be modulation of the unfolded protein response (UPR) pathway. Prolonged ER stress, via the UPR signaling pathways, contributes to the pathogenesis in a number of chronic degenerative diseases, and is an important target for therapeutic modulation. Intraputamenally administered recombinant human CDNF has shown robust neurorestorative effects in a number of small and large animal models of PD, and had a good safety profile in preclinical toxicology studies. Intermittent monthly bilateral intraputamenal infusions of CDNF are currently being tested in a randomized placebo-controlled phase I-II clinical study in moderately advanced PD patients. Here, we review the history of growth factor-based clinical trials in PD, and discuss how CDNF differs from the previously tested growth factors.


Melatonin receptor type 1A gene linked to Alzheimer's disease in old age.

  • Sonja Sulkava‎ et al.
  • Sleep‎
  • 2018‎

Disruption of the circadian rhythms is a frequent preclinical and clinical manifestation of Alzheimer's disease. Furthermore, it has been suggested that shift work is a risk factor for Alzheimer's disease. Previously, we have reported association of intolerance to shift work (job-related exhaustion in shift workers) with a variant rs12506228A, which is situated close to melatonin receptor type 1A gene (MTNR1A) and linked to MTNR1A brain expression levels. Here, we studied association of that variant with clinical and neuropathological Alzheimer's disease in a Finnish whole-population cohort Vantaa 85+ (n = 512, participants over 85 years) and two follow-up cohorts. Rs12506228A was associated with clinical Alzheimer's disease (p = 0.000073). Analysis of post-mortem brain tissues showed association with higher amount of neurofibrillary tangles (p = 0.0039) and amyloid beta plaques (p = 0.0041). We then followed up the associations in two independent replication samples. Replication for the association with clinical Alzheimer's disease was detected in Kuopio 75+ (p = 0.012, n = 574), but not in the younger case-control sample (n = 651 + 669). While melatonin has been established in regulation of circadian rhythms, an independent role has been also shown for neuroprotection and specifically for anti-amyloidogenic effects. Indeed, in vitro, RNAi mediated silencing of MTNR1A increased the amyloidogenic processing of amyloid precursor protein (APP) in neurons, whereas overexpression decreased it. Our findings suggest variation close to MTNR1A as a shared genetic risk factor for intolerance to shift work and Alzheimer's disease in old age. The genetic associations are likely to be mediated by differences in MTNR1A expression, which, in turn, modulate APP metabolism.


Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and in vitro models.

  • Henna Martiskainen‎ et al.
  • Neurobiology of aging‎
  • 2015‎

In this study, we have assessed the expression and splicing status of genes involved in the pathogenesis or affecting the risk of Alzheimer's disease (AD) in the postmortem inferior temporal cortex samples obtained from 60 subjects with varying degree of AD-related neurofibrillary pathology. These subjects were grouped based on neurofibrillary pathology into 3 groups: Braak stages 0-II, Braak stages III-IV, and Braak stages V-VI. We also examined the right frontal cortical biopsies obtained during life from 22 patients with idiopathic shunt-responding normal pressure hydrocephalus, a disease that displays similar pathologic alterations as seen in AD. These 22 patients were categorized according to dichotomized amyloid-β positive or negative pathology in the biopsies. We observed that the expression of FRMD4A significantly decreased, and the expression of MS4A6A significantly increased in relation to increasing AD-related neurofibrillary pathology. Moreover, the expression of 2 exons in both CLU and TREM2 significantly increased with increase in AD-related neurofibrillary pathology. However, a similar trend toward increased expression in CLU and TREM2 was observed with most of the studied exons, suggesting a global change in the expression rather than altered splicing. Correlation of gene expression with well-established AD-related factors, such as α-, β-, and γ-secretase activities, brain amyloid-β42 levels, and cerebrospinal fluid biomarkers, revealed a positive correlation between β-secretase activity and the expression of TREM2 and BIN1. In expression quantitative trait loci analysis, we did not detect significant effects of the risk alleles on gene expression or splicing. Analysis of the normal pressure hydrocephalus biopsies revealed no differences in the expression or splicing profiles of the studied genes between amyloid-β positive and negative patients. Using the protein-protein interaction-based in vitro pathway analysis tools, we found that downregulation of FRMD4A associated with increased APP-β-secretase interaction, increased amyloid-β40 secretion, and altered phosphorylation of tau. Taken together, our results suggest that the expression of FRMD4A, MS4A6A, CLU, and TREM2 is altered in relation to increasing AD-related neurofibrillary pathology, and that FRMD4A may play a role in amyloidogenic and tau-related pathways in AD. Therefore, investigation of gene expression changes in the brain and effects of the identified genes on disease-associated pathways in vitro may provide mechanistic insights on how alterations in these genes may contribute to AD pathogenesis.


Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules.

  • Cecilia A Brunello‎ et al.
  • Scientific reports‎
  • 2016‎

Stress granules are membrane-less RNA- and RNA-binding protein-containing complexes that are transiently assembled in stressful conditions to promote cell survival. Several stress granule-associated RNA-binding proteins have been associated with neurodegenerative diseases. In addition, a close link was recently identified between the stress granule core-nucleating protein TIA-1 and Tau. Tau is a central pathological protein in Alzheimer's disease and other tauopathies, and misfolded, aggregated Tau is capable of propagating pathology via cell-to-cell transmission. Here we show that following internalization hyperphosphorylated extracellular Tau associates with stress granules in a TIA-1 dependent manner. Cytosolic Tau normally only weakly interacts with TIA-1 but mutations mimicking abnormal phosphorylation promote this interaction. We show that internalized Tau significantly delays normal clearance of stress granules in the recipient cells sensitizing them to secondary stress. These results suggest that secreted Tau species may have properties, likely related to its hyperphosphorylation and oligomerization, which promote pathological association of internalized Tau with stress granules altering their dynamics and reducing cell viability. We suggest that stress granules and TIA-1 play a central role in the cell-to-cell transmission of Tau pathology.


Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury.

  • Kai Kysenius‎ et al.
  • PloS one‎
  • 2014‎

The global incidence of metabolic and age-related diseases, including type 2 diabetes and Alzheimer's disease, is on the rise. In addition to traditional pharmacotherapy, drug candidates from complementary and alternative medicine are actively being pursued for further drug development. Berberine, a nutraceutical traditionally used as an antibiotic, has recently been proposed to act as a multi-target protective agent against type 2 diabetes, dyslipidemias, ischemic brain injury and neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the safety profile of berberine remains controversial, as isolated reports suggest risks with acute toxicity, bradycardia and exacerbation of neurodegeneration. We report that low micromolar berberine causes rapid mitochondria-dependent toxicity in primary neurons characterized by mitochondrial swelling, increased oxidative stress, decreased mitochondrial membrane potential and depletion of ATP content. Berberine does not induce caspase-3 activation and the resulting neurotoxicity remains unaffected by pan-caspase inhibitor treatment. Interestingly, inhibition of NMDA receptors by memantine and MK-801 completely blocked berberine-induced neurotoxicity. Additionally, subtoxic nanomolar concentrations of berberine were sufficient to sensitize neurons to glutamate excitotoxicity and rotenone injury. Our study highlights the need for further safety assessment of berberine, especially due to its tendency to accumulate in the CNS and the risk of potential neurotoxicity as a consequence of increasing bioavailability of berberine.


Membrane interaction and disulphide-bridge formation in the unconventional secretion of Tau.

  • Marianna Hellén‎ et al.
  • Bioscience reports‎
  • 2021‎

Misfolded, pathological tau protein propagates from cell to cell causing neuronal degeneration in Alzheimer's disease and other tauopathies. The molecular mechanisms of this process have remained elusive. Unconventional secretion of tau takes place via several different routes, including direct penetration through the plasma membrane. Here, we show that tau secretion requires membrane interaction via disulphide bridge formation. Mutating residues that reduce tau interaction with membranes or formation of disulphide bridges decrease both tau secretion from cells, and penetration through artificial lipid membranes. Our results demonstrate that tau is indeed able to penetrate protein-free membranes in a process independent of active cellular processes and that both membrane interaction and disulphide bridge formation are needed for this process. QUARK-based de novo modelling of the second and third microtubule-binding repeat domains (MTBDs), in which the two cysteine residues of 4R isoforms of tau are located, supports the concept that this region of tau could form transient amphipathic helices for membrane interaction.


Cerebral dopamine neurotrophic factor reduces α-synuclein aggregation and propagation and alleviates behavioral alterations in vivo.

  • Katrina Albert‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2021‎

A molecular hallmark in Parkinson's disease (PD) pathogenesis are α-synuclein aggregates. Cerebral dopamine neurotrophic factor (CDNF) is an atypical growth factor that is mostly resident in the endoplasmic reticulum but exerts its effects both intracellularly and extracellularly. One of the beneficial effects of CDNF can be protecting neurons from the toxic effects of α-synuclein. Here, we investigated the effects of CDNF on α-synuclein aggregation in vitro and in vivo. We found that CDNF directly interacts with α-synuclein with a KD = 23 ± 6 nM and reduces its auto-association. Using nuclear magnetic resonance (NMR) spectroscopy, we identified interaction sites on the CDNF protein. Remarkably, CDNF reduces the neuronal internalization of α-synuclein fibrils and induces the formation of insoluble phosphorylated α-synuclein inclusions. Intra-striatal CDNF administration alleviates motor deficits in rodents challenged with α-synuclein fibrils, though it did not reduce the number of phosphorylated α-synuclein inclusions in the substantia nigra. CDNF's beneficial effects on rodent behavior appear not to be related to the number of inclusions formed in the current context, and further study of its effects on the aggregation mechanism in vivo are needed. Nonetheless, the interaction of CDNF with α-synuclein, modifying its aggregation, spreading, and associated behavioral alterations, provides novel insights into the potential of CDNF as a therapeutic strategy in PD and other synucleinopathies.


Secretion of Tau via an Unconventional Non-vesicular Mechanism.

  • Maria Merezhko‎ et al.
  • Cell reports‎
  • 2018‎

Tauopathies are characterized by cerebral accumulation of Tau protein aggregates that appear to spread throughout the brain via a cell-to-cell transmission process that includes secretion and uptake of pathological Tau, followed by templated misfolding of normal Tau in recipient cells. Here, we show that phosphorylated, oligomeric Tau clusters at the plasma membrane in N2A cells and is secreted in vesicle-free form in an unconventional process sensitive to changes in membrane properties, particularly cholesterol and sphingomyelin content. Cell surface heparan sulfate proteoglycans support Tau secretion, possibly by facilitating its release after membrane penetration. Notably, secretion of endogenous Tau from primary cortical neurons is mediated, at least partially, by a similar mechanism. We suggest that Tau is released from cells by an unconventional secretory mechanism that involves its phosphorylation and oligomerization and that membrane interaction may help Tau to acquire properties that allow its escape from cells directly through the plasma membrane.


Novel carbon film induces precocious calcium oscillation to promote neuronal cell maturation.

  • Anastasia Ludwig‎ et al.
  • Scientific reports‎
  • 2020‎

Different types of carbon materials are biocompatible with neural cells and can promote maturation. The mechanism of this effect is not clear. Here we have tested the capacity of a carbon material composed of amorphous sp3 carbon backbone, embedded with a percolating network of sp2 carbon domains to sustain neuronal cultures. We found that cortical neurons survive and develop faster on this novel carbon material. After 3 days in culture, there is a precocious increase in the frequency of neuronal activity and in the expression of maturation marker KCC2 on carbon films as compared to a commonly used glass surface. Accelerated development is accompanied by a dramatic increase in neuronal dendrite arborization. The mechanism for the precocious maturation involves the activation of intracellular calcium oscillations by the carbon material already after 1 day in culture. Carbon-induced oscillations are independent of network activity and reflect intrinsic spontaneous activation of developing neurons. Thus, these results reveal a novel mechanism for carbon material-induced neuronal survival and maturation.


Multiplex assay for live-cell monitoring of cellular fates of amyloid-β precursor protein (APP).

  • Maria Merezhko‎ et al.
  • PloS one‎
  • 2014‎

Amyloid-β precursor protein (APP) plays a central role in pathogenesis of Alzheimer's disease. APP has a short half-life and undergoes complex proteolytic processing that is highly responsive to various stimuli such as changes in cellular lipid or energy homeostasis. Cellular trafficking of APP is controlled by its large protein interactome, including dozens of cytosolic adaptor proteins, and also by interactions with lipids. Currently, cellular regulation of APP is mostly studied based on appearance of APP-derived proteolytic fragments to conditioned media and cellular extracts. Here, we have developed a novel live-cell assay system based on several indirect measures that reflect altered APP trafficking and processing in cells. Protein-fragment complementation assay technology for detection of APP-BACE1 protein-protein interaction forms the core of the new assay. In a multiplex form, the assay can measure four endpoints: total cellular APP level, total secreted sAPP level in media, APP-BACE1 interaction in cells and in exosomes released by the cells. Functional validation of the assay with pharmacological and genetic tools revealed distinct patterns of cellular fates of APP, with immediate mechanistic implications. This new technology will facilitate functional genomics studies of late-onset Alzheimer's disease, drug discovery efforts targeting APP and characterization of the physiological functions of APP and its proteolytic fragments.


Expression of GluK1c underlies the developmental switch in presynaptic kainate receptor function.

  • Aino Vesikansa‎ et al.
  • Scientific reports‎
  • 2012‎

Kainate-type glutamate receptors (KARs) regulate synaptic transmission and neuronal excitability via multiple mechanisms, depending on their subunit composition. Presynaptic KARs tonically depress glutamatergic transmission during restricted period of synapse development; however, the molecular basis behind this effect is unknown. Here, we show that the developmental and cell-type specific expression pattern of a KAR subunit splice variant, GluK1c, corresponds to the immature-type KAR activity in the hippocampus. GluK1c localizes to dendritic contact sites at distal axons, the distal targeting being promoted by heteromerization with the subunit GluK4. Presynaptic expression of GluK1c strongly suppresses glutamatergic transmission in cell-pairs in vitro and mimics the immature-type KAR activity at CA3-CA1 synapses in vivo, at a developmental stage when the endogenous expression is already downregulated. These data support a central role for GluK1c in mediating tonic inhibition of glutamate release and the consequent effects on excitability and activity-dependent fine-tuning of the developing hippocampal circuitry.


Stress-induced upregulation of VLDL receptor alters Wnt-signaling in neurons.

  • Kai Kysenius‎ et al.
  • Experimental cell research‎
  • 2016‎

Lipoprotein receptor family members hold multiple roles in the brain, and alterations in lipoprotein receptor expression and function are implicated in neuronal stress, developmental disorders and neurodegenerative diseases, such as Alzheimer's disease. Berberine (BBR), a nutraceutical shown to have both neuroprotective and neurotoxic properties, is suggested to regulate lipoprotein receptor expression. We show that subtoxic concentration of BBR regulates neuronal lipoprotein receptor expression in a receptor- and time-dependent fashion in cerebellar granule neurons (CGN). Similarly to BBR, subtoxic concentrations of neuronal stressors cobalt chloride, thapsigargin and rotenone increased very-low-density lipoprotein receptor (VLDLR) mRNA and protein expression in CGN suggesting a conserved pathway for stress-induced upregulation of VLDLR in neurons. We also show that VLDLR upregulation is accompanied by transiently increased stabilization of hypoxia-induced factor 1 alpha (HIF-1α) and decreased β-catenin levels affecting the Wnt pathway through GSK3β phosphorylation, a crucial player in neurodegenerative processes. Our results indicate that neuronal stress differentially regulates lipoprotein receptor expression in neurons, with VLDLR upregulation as a common element as a modulator of neuronal Wnt signaling.


Axonal Kainate Receptors Modulate the Strength of Efferent Connectivity by Regulating Presynaptic Differentiation.

  • Prasanna Sakha‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2016‎

Kainate type of glutamate receptors (KARs) are highly expressed during early brain development and may influence refinement of the circuitry, via modulating synaptic transmission and plasticity. KARs are also localized to axons, however, their exact roles in regulating presynaptic processes remain controversial. Here, we have used a microfluidic chamber system allowing specific manipulation of KARs in presynaptic neurons to study their functions in synaptic development and function in vitro. Silencing expression of endogenous KARs resulted in lower density of synaptophysin immunopositive puncta in microfluidically isolated axons. Various recombinant KAR subunits and pharmacological compounds were used to dissect the mechanisms behind this effect. The calcium permeable (Q) variants of the low-affinity (GluK1-3) subunits robustly increased synaptophysin puncta in axons in a manner that was dependent on receptor activity and PKA and PKC dependent signaling. Further, an associated increase in the mean active zone length was observed in electron micrographs. Selective presynaptic expression of these subunits resulted in higher success rate of evoked EPSCs consistent with higher probability of glutamate release. In contrast, the calcium-impermeable (R) variant of GluK1 or the high-affinity subunits (GluK4,5) had no effect on synaptic density or transmission efficacy. These data suggest that calcium permeable axonal KARs promote efferent connectivity by increasing the density of functional presynaptic release sites.


Inhibition of Homophilic Interactions and Ligand Binding of the Receptor for Advanced Glycation End Products by Heparin and Heparin-Related Carbohydrate Structures.

  • Ari Rouhiainen‎ et al.
  • Medicines (Basel, Switzerland)‎
  • 2018‎

Background: Heparin and heparin-related sulphated carbohydrates inhibit ligand binding of the receptor for advanced glycation end products (RAGE). Here, we have studied the ability of heparin to inhibit homophilic interactions of RAGE in living cells and studied how heparin related structures interfere with RAGE⁻ligand interactions. Methods: Homophilic interactions of RAGE were studied with bead aggregation and living cell protein-fragment complementation assays. Ligand binding was analyzed with microwell binding and chromatographic assays. Cell surface advanced glycation end product binding to RAGE was studied using PC3 cell adhesion assay. Results: Homophilic binding of RAGE was mediated by V₁- and modulated by C₂-domain in bead aggregation assay. Dimerisation of RAGE on the living cell surface was inhibited by heparin. Sulphated K5 carbohydrate fragments inhibited RAGE binding to amyloid β-peptide and HMGB1. The inhibition was dependent on the level of sulfation and the length of the carbohydrate backbone. α-d-Glucopyranosiduronic acid (glycyrrhizin) inhibited RAGE binding to advanced glycation end products in PC3 cell adhesion and protein binding assays. Further, glycyrrhizin inhibited HMGB1 and HMGB1 A-box binding to heparin. Conclusions: Our results show that K5 polysaccharides and glycyrrhizin are promising candidates for RAGE targeting drug development.


A prolyl oligopeptidase inhibitor reduces tau pathology in cellular models and in mice with tauopathy.

  • Tony S Eteläinen‎ et al.
  • Science translational medicine‎
  • 2023‎

Tauopathies are neurodegenerative diseases that are characterized by accumulation of hyperphosphorylated tau protein, higher-order aggregates, and tau filaments. Protein phosphatase 2A (PP2A) is a major tau dephosphorylating phosphatase, and a decrease in its activity has been demonstrated in tauopathies, including Alzheimer's disease. Prolyl oligopeptidase is a serine protease that is associated with neurodegeneration, and its inhibition normalizes PP2A activity without toxicity under pathological conditions. Here, we assessed whether prolyl oligopeptidase inhibition could protect against tau-mediated toxicity in cellular models in vitro and in the PS19 transgenic mouse model of tauopathy carrying the human tau-P301S mutation. We show that inhibition of prolyl oligopeptidase with the inhibitor KYP-2047 reduced tau aggregation in tau-transfected HEK-293 cells and N2A cells as well as in human iPSC-derived neurons carrying either the P301L or tau-A152T mutation. Treatment with KYP-2047 resulted in increased PP2A activity and activation of autophagic flux in HEK-293 cells and N2A cells and in patient-derived iNeurons, as indicated by changes in autophagosome and autophagy receptor markers; this contributed to clearance of insoluble tau. Furthermore, treatment of PS19 transgenic mice for 1 month with KYP-2047 reduced tau burden in the brain and cerebrospinal fluid and slowed cognitive decline according to several behavioral tests. In addition, a reduction in an oxidative stress marker was seen in mouse brains after KYP-2047 treatment. This study suggests that inhibition of prolyl oligopeptidase could help to ameliorate tau-dependent neurodegeneration.


Live-cell monitoring of protein localization to membrane rafts using protein-fragment complementation.

  • Maria Merezhko‎ et al.
  • Bioscience reports‎
  • 2020‎

The plasma membrane consists of a variety of discrete domains differing from the surrounding membrane in composition and properties. Selective partitioning of protein to these microdomains is essential for membrane functioning and integrity. Studying the nanoscale size and dynamic nature of the membrane microdomains requires advanced imaging approaches with a high spatiotemporal resolution and, consequently, expensive and specialized equipment, unavailable for most researchers and unsuited for large-scale studies. Thus, understanding of protein partitioning to the membrane microdomains in health and disease is still hampered by the lack of inexpensive live-cell approaches with an appropriate spatial resolution. Here, we have developed a novel approach based on Gaussia princeps luciferase protein-fragment complementation assay to quantitively investigate protein partitioning to cholesterol and sphingomyelin-rich domains, sometimes called 'lipid rafts', in intact living cells with a high-spatial resolution. In the assay, the reporter construct, carrying one half of the luciferase protein, is targeted to lipid microdomains through the fused acetylation motif from Src-family kinase Fyn. A protein of interest carries the second half of the luciferase protein. Together, this serves as a reversible real-time sensor of raft recruitment for the studied protein. We demonstrated that the assay can efficiently detect the dynamic alterations in raft localization of two disease-associated proteins: Akt and APP. Importantly, this method can be used in high-throughput screenings and other large-scale studies in living cells. This inexpensive, and easy to implement raft localization assay will benefit all researchers interested in protein partitioning in rafts.


Reduced evoked activity and cortical oscillations are correlated with anisometric amblyopia and impairment of visual acuity.

  • Hanna Julku‎ et al.
  • Scientific reports‎
  • 2021‎

Amblyopia is a developmental disorder associated with abnormal visual experience during early childhood commonly arising from strabismus and/or anisometropia and leading to dysfunctions in visual cortex and to various visual deficits. The different forms of neuronal activity that are attenuated in amblyopia have been only partially characterized. In electrophysiological recordings of healthy human brain, the presentation of visual stimuli is associated with event-related activity and oscillatory responses. It has remained poorly understood whether these forms of activity are reduced in amblyopia and whether possible dysfunctions would arise from lower- or higher-order visual areas. We recorded neuronal activity with magnetoencephalography (MEG) from anisometropic amblyopic patients and control participants during two visual tasks presented separately for each eye and estimated neuronal activity from source-reconstructed MEG data. We investigated whether event-related and oscillatory responses would be reduced for amblyopia and localized their cortical sources. Oscillation amplitudes and evoked responses were reduced for stimuli presented to the amblyopic eye in higher-order visual areas and in parietal and prefrontal cortices. Importantly, the reduction of oscillation amplitudes but not that of evoked responses was correlated with decreased visual acuity in amblyopia. These results show that attenuated oscillatory responses are correlated with visual deficits in anisometric amblyopia.


Augmenting hematoma-scavenging capacity of innate immune cells by CDNF reduces brain injury and promotes functional recovery after intracerebral hemorrhage.

  • Kuan-Yin Tseng‎ et al.
  • Cell death & disease‎
  • 2023‎

During intracerebral hemorrhage (ICH), hematoma formation at the site of blood vessel damage results in local mechanical injury. Subsequently, erythrocytes lyse to release hemoglobin and heme, which act as neurotoxins and induce inflammation and secondary brain injury, resulting in severe neurological deficits. Accelerating hematoma resorption and mitigating hematoma-induced brain edema by modulating immune cells has potential as a novel therapeutic strategy for functional recovery after ICH. Here, we show that intracerebroventricular administration of recombinant human cerebral dopamine neurotrophic factor (rhCDNF) accelerates hemorrhagic lesion resolution, reduces peri-focal edema, and improves neurological outcomes in an animal model of collagenase-induced ICH. We demonstrate that CDNF acts on microglia/macrophages in the hemorrhagic striatum by promoting scavenger receptor expression, enhancing erythrophagocytosis and increasing anti-inflammatory mediators while suppressing the production of pro-inflammatory cytokines. Administration of rhCDNF results in upregulation of the Nrf2-HO-1 pathway, but alleviation of oxidative stress and unfolded protein responses in the perihematomal area. Finally, we demonstrate that intravenous delivery of rhCDNF has beneficial effects in an animal model of ICH and that systemic application promotes scavenging by the brain's myeloid cells for the treatment of ICH.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: