Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 133 papers

Caprin-2 enhances canonical Wnt signaling through regulating LRP5/6 phosphorylation.

  • Yu Ding‎ et al.
  • The Journal of cell biology‎
  • 2008‎

The low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) are coreceptors for Frizzled and transmit signals from the plasma membrane to the cytosol. However, the mechanism for LRP5/6 signal transmission remains undefined. Here, we identify cytoplasmic activation/proliferation-associated protein 2 (Caprin-2) as a LRP5/6-binding protein. Our data show that Caprin-2 stabilizes cytosolic beta-catenin and enhances lymphoid enhancer-binding factor 1/T cell factor-dependent reporter gene activity as well as the expression of Wnt target genes in mammalian cells. Morpholino-mediated knockdown of Caprin-2 in zebrafish embryos inhibits Wnt/beta-catenin signaling and results in a dorsalized phenotype. Moreover, Caprin-2 facilitates LRP5/6 phosphorylation by glycogen synthase kinase 3, and thus enhances the interaction between Axin and LRP5/6. Therefore, Caprin-2 promotes activation of the canonical Wnt signaling pathway by regulating LRP5/6 phosphorylation.


A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers.

  • Fabiana H G Farias‎ et al.
  • Neurobiology of disease‎
  • 2011‎

A recessive, adult-onset neuronal ceroid-lipofuscinosis (NCL) occurs in Tibetan terriers. A genome-wide association study restricted this NCL locus to a 1.3Mb region of canine chromosome 2 which contains canine ATP13A2. NCL-affected dogs were homozygous for a single-base deletion in ATP13A2, predicted to produce a frameshift and premature termination codon. Homozygous truncating mutations in human ATP13A2 have been shown by others to cause Kufor-Rakeb syndrome (KRS), a rare neurodegenerative disease. These findings suggest that KRS is also an NCL, although analysis of KRS brain tissue will be needed to confirm this prediction. Generalized brain atrophy, behavioral changes, and cognitive decline occur in both people and dogs with ATP13A2 mutations; however, other clinical features differ between the species. For example, Tibetan terriers with NCL develop cerebellar ataxia not reported in KRS patients and KRS patients exhibit parkinsonism and pyramidal dysfunction not observed in affected Tibetan terriers. To see if ATP13A2 mutations could be responsible for some cases of human adult-onset NCL (Kufs disease), we resequenced ATP13A2 from 28 Kufs disease patients. None of these patients had ATP13A2 sequence variants likely to be causal for their disease, suggesting that mutations in this gene are not common causes of Kufs disease.


Transcript and protein expression decoupling reveals RNA binding proteins and miRNAs as potential modulators of human aging.

  • Yu-Ning Wei‎ et al.
  • Genome biology‎
  • 2015‎

In studies of development and aging, the expression of many genes has been shown to undergo drastic changes at mRNA and protein levels. The connection between mRNA and protein expression level changes, as well as the role of posttranscriptional regulation in controlling expression level changes in postnatal development and aging, remains largely unexplored.


Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway.

  • Hao Lin‎ et al.
  • Drug design, development and therapy‎
  • 2014‎

Apoptosis of osteoblasts triggered by high-dose glucocorticoids (GCs) has been identified as a major cause of osteoporosis. However, the underlying molecular mechanisms accounting for this action remain elusive, which has impeded the prevention and cure of this side effect. Sulforaphane (SFP) is a naturally occurring isothiocyanate that has huge health benefits for humans. In this study, by using osteoblastic MC3T3-E1 cells as a model, we demonstrate the protective effects of SFP against dexamethasone (Dex)-induced apoptosis and elucidate the underlying molecular mechanisms. The results show that SFP could effectively inhibit the Dex-induced growth inhibition and release of lactate dehydrogenase in MC3T3-E1 cells. Treatment with Dex induced caspase-dependent apoptosis in MC3T3-E1 cells, as evidenced by an increase in the Sub-G1 phase, chromatin condensation, and deoxyribonucleic acid fragmentation, which were significantly suppressed by coincubation with SFP. Mitochondria-mediated apoptosis pathway contributed importantly to Dex-induced apoptosis, as revealed by the activation of caspase-3/-9 and subsequent cleavage of poly adenosine diphosphate ribose polymerase, which was also effectively blocked by SFP. Moreover, treatments of Dex strongly induced overproduction of reactive oxygen species and inhibited the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and the downstream effectors HO1 and NQO1. However, cotreatment with SFP effectively reversed this action of Dex. Furthermore, silencing of Nrf2 by small interfering ribonucleic acid significantly blocked the cytoprotective effects of SFP against Dex-induced apoptosis, which suggest the important role of Nrf2 signaling pathway and cell apoptosis induced by Dex. Taken together, this study provides a novel strategy for molecular intervention against Dex-induced osteoporosis using phytochemicals.


Inhibition of inflammatory mediator release from microglia can treat ischemic/hypoxic brain injury.

  • Huaibo Wang‎ et al.
  • Neural regeneration research‎
  • 2013‎

Interleukin-1α and interleukin-1β aggravate neuronal injury by mediating the inflammatory reaction following ischemic/hypoxic brain injury. It remains unclear whether interleukin-1α and interleukin-1β are released by microglia or astrocytes. This study prepared hippocampal slices that were subsequently subjected to oxygen and glucose deprivation. Hematoxylin-eosin staining verified that neurons exhibited hypoxic changes. Results of enzyme-linked immunosorbent assay found that interleukin-1α and interleukin-1β participated in this hypoxic process. Moreover, when hypoxic injury occurred in the hippocampus, the release of interleukin-1α and interleukin-1β was mediated by the P2X4 receptor and P2X7 receptor. Immunofluorescence staining revealed that during ischemia/hypoxia, the P2X4 receptor, P2X7 receptor, interleukin-1α and interleukin-1β expression was detectable in rat hippocampal microglia, but only P2X4 receptor and P2X7 receptor expression was detected in astrocytes. Results suggested that the P2X4 receptor and P2X7 receptor, respectively, mediated interleukin-1α and interleukin-1β released by microglia, resulting in hippocampal ischemic/hypoxic injury. Astrocytes were activated, but did not synthesize or release interleukin-1α and interleukin-1β.


Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts.

  • Lijuan Chen‎ et al.
  • PloS one‎
  • 2014‎

Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy's success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry), have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs) by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF) using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.


Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction.

  • Deli Xiao‎ et al.
  • Scientific reports‎
  • 2016‎

Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What's more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.


Andrographolide Inhibits Ovariectomy-Induced Bone Loss via the Suppression of RANKL Signaling Pathways.

  • Tao Wang‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Osteoporosis is a debilitating skeletal disorder with an increased risk of low-energy fracture, which commonly occurs among postmenopausal women. Andrographolide (AP), a natural product isolated from Andrographis paniculata, has been found to have anti-inflammatory, anti-cancer, anti-asthmatic, and neuro-protective properties. However, its therapeutic effect on osteoporosis is unknown. In this study, an ovariectomy (OVX) mouse model was used to evaluate the therapeutic effects of AP on post-menopausal osteoporosis by using micro-computed tomography (micro-CT). Bone marrow-derived osteoclast culture was used to examine the inhibitory effect of AP on osteoclastogenesis. Real time PCR was employed to examine the effect of AP on the expression of osteoclast marker genes. The activities of transcriptional factors NF-κB and NFATc1 were evaluated using a luciferase reporter assay, and the IκBα protein level was analyzed by Western blot. We found that OVX mice treated with AP have greater bone volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) compared to vehicle-treated OVX mice. AP inhibited RANKL-induced osteoclastogenesis, the expression of osteoclast marker genes including cathepsin K (Ctsk), TRACP (Acp5), and NFATc1, as well as the transcriptional activities of NF-κB and NFATc1. In conclusion, our results suggest that AP inhibits estrogen deficiency-induced bone loss in mice via the suppression of RANKL-induced osteoclastogensis and NF-κB and NFATc1 activities and, thus, might have therapeutic potential for osteoporosis.


CCNYL1, but Not CCNY, Cooperates with CDK16 to Regulate Spermatogenesis in Mouse.

  • Zhenzhen Zi‎ et al.
  • PLoS genetics‎
  • 2015‎

Cyclin Y-like 1 (Ccnyl1) is a newly-identified member of the cyclin family and is highly similar in protein sequences to Cyclin Y (Ccny). However, the function of Ccnyl1 is poorly characterized in any organism. Here we found that Ccnyl1 was most abundantly expressed in the testis of mice and was about seven times higher than the level of Ccny. Male Ccnyl1-/- mice were infertile, whereas both male and female Ccny-/- mice displayed normal fertility. These results suggest that Ccnyl1, but not Ccny, is indispensable for male fertility. Spermatozoa obtained from Ccnyl1-/- mice displayed significantly impaired motility, and represented a thinned annulus region and/or a bent head. We found that the protein, but not the mRNA, level of cyclin-dependent kinase 16 (CDK16) was decreased in the testis of Ccnyl1-/- mice. Further study demonstrated that CCNYL1 interacted with CDK16 and this interaction mutually increased the stability of these two proteins. Moreover, the interaction increased the kinase activity of CDK16. In addition, we observed an alteration of phosphorylation levels of CDK16 in the presence of CCNYL1. We identified the phosphorylation sites of CDK16 by mass spectrometry and revealed that several phosphorylation modifications on the N-terminal region of CDK16 were indispensable for the CCNYL1 binding and the modulation of CDK16 kinase activity. Our results therefore reveal a previously unrecognized role of CCNYL1 in regulating spermatogenesis through the interaction and modulation of CDK16.


Frequency-Dependent Neural Activity in Patients with Unilateral Vascular Pulsatile Tinnitus.

  • Han Lv‎ et al.
  • Neural plasticity‎
  • 2016‎

Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have shown that neurological changes are important findings in vascular pulsatile tinnitus (PT) patients. Here, we utilized rs-fMRI to measure the amplitude of low-frequency fluctuations (ALFF) in forty patients with unilateral PT and forty age-, gender-, and education-matched normal control subjects. Two different frequency bands (slow-4, 0.027-0.073 Hz, and slow-5, 0.010-0.027 Hz, which are more sensitive to subcortical and cortical neurological signal changes, resp.) were analyzed to examine the intrinsic brain activity in detail. Compared to controls, PT patients had increased ALFF values mainly in the PCu, bilateral IPL (inferior parietal lobule), left IFG (inferior frontal gyrus), and right IFG/anterior insula and decreased ALFF values in the multiple occipital areas including bilateral middle-inferior occipital lobe. For the differences of the two frequency bands, widespread ALFF differences were observed. The ALFF abnormalities in aMPFC/ACC, PCu, right IPL, and some regions of occipital and parietal cortices were greater in the slow-5 band compared to the slow-4 band. Additionally, the THI score of PT patients was positively correlated with changes in slow-5 and slow-4 band in PCu. Pulsatile tinnitus is a disease affecting the neurological activities of multiple brain regions. Slow-5 band is more sensitive in detecting the alternations. Our results also indicated the importance of pathophysiological investigations in patients with pulsatile tinnitus in the future.


Multiple analyses of large-scale genome-wide association study highlight new risk pathways in lumbar spine bone mineral density.

  • Jinsong Wei‎ et al.
  • Oncotarget‎
  • 2016‎

Osteoporosis is a common human complex disease. It is mainly characterized by low bone mineral density (BMD) and low-trauma osteoporotic fractures (OF). Until now, a large proportion of heritability has yet to be explained. The existing large-scale genome-wide association studies (GWAS) provide strong support for the investigation of osteoporosis mechanisms using pathway analysis. Recent findings showed that different risk pathways may be involved in BMD in different tissues. Here, we conducted multiple pathway analyses of a large-scale lumbar spine BMD GWAS dataset (2,468,080 SNPs and 31,800 samples) using two published gene-based analysis software including ProxyGeneLD and the PLINK. Using BMD genes from ProxyGeneLD, we identified 51 significant KEGG pathways with adjusted P<0.01. Using BMD genes from PLINK, we identified 38 significant KEGG pathways with adjusted P<0.01. Interestingly, 33 pathways are shared in both methods. In summary, we not only identified the known risk pathway such as Wnt signaling, in which the top GWAS variants are significantly enriched, but also highlight some new risk pathways. Interestingly, evidence from further supports the involvement of these pathways in MBD.


Manipulation of the Alternative NF-κB Pathway in Mice Has Sexually Dimorphic Effects on Bone.

  • Allahdad Zarei‎ et al.
  • JBMR plus‎
  • 2019‎

Alternative NF-κB signaling promotes osteoclastogenesis and pathological bone loss, but the effect of sex on phenotype has not been explored. We disrupted alternative NF-κB signaling by deletion of upstream kinase NF-κB-inducing kinase (NIK) or NF-κB subunit RelB and found that both NIK-deficient and RelB-deficient female mice possessed more than twofold higher trabecular bone mass compared to controls, whereas no differences were observed in males. In vitro, RelB-deficient precursors from female mice showed a more severe osteoclast (OC) differentiation defect than male, while WT had no sex bias. Next, we asked whether pharmacologic activation of alternative NF-κB by inhibitor of apoptosis (IAP) antagonist BV6 has sex-dependent effects on bone. Unlike male mice that lost bone, female mice on BV6 for 4 weeks showed no changes in either trabecular bone mass or OC number. Because estrogen generally suppresses NF-κB, we hypothesized that estrogen protects bone from BV6 effects in vivo. Thus, we performed ovariectomy or sham surgery in female mice, then treated with BV6 or vehicle for 4 weeks. Although ovariectomy caused bone loss, BV6 did not have any additional impact, suggesting that direct estrogen effects do not cause resistance to BV6 in vivo. The osteopenic effects of IAP antagonists in males may have implications for their use in cancer therapy. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.


Abnormal regional activity and functional connectivity in resting-state brain networks associated with etiology confirmed unilateral pulsatile tinnitus in the early stage of disease.

  • Han Lv‎ et al.
  • Hearing research‎
  • 2017‎

Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus.


Chemical biology reveals CARF as a positive regulator of canonical Wnt signaling by promoting TCF/β-catenin transcriptional activity.

  • Xiaoli He‎ et al.
  • Cell discovery‎
  • 2017‎

Wnt/β-catenin signaling regulates multiple biological processes and aberration of this pathway is frequently observed in human cancers. Previously, we uncovered NC043 as a small-molecule inhibitor of Wnt/β-catenin signaling. Here, we identified CARF as the cellular target of NC043. We found that NC043 binds directly to CARF through forming a covalent bond with the Cys-516 residue of CARF. Further study revealed that CARF interacts with Dvl, which potentiates the Dvl-c-Jun-β-catenin-TCF transcriptional complex and thus promotes Wnt signaling activation. NC043 could disrupt the interaction between CARF and Dvl, thereby impairing Wnt signal transduction. In line with this, knockdown of CARF in zebrafish leads to impairment of embryonic development, hematopoietic stem cell generation and caudal fin regeneration. Collectively, we identified CARF as the cellular target of NC043 and revealed CARF as a positive regulator of Wnt/β-catenin signal transduction.


Systematic Synergy of Glucose and GLP-1 to Stimulate Insulin Secretion Revealed by Quantitative Phosphoproteomics.

  • Jia-Shu Tang‎ et al.
  • Scientific reports‎
  • 2017‎

GLP-1 synergizes with glucose in regulating pancreatic β-cell function, including facilitating β-cell survival and insulin secretion. Though it has been widely accepted that phosphorylation is extremely important in regulating β-cell functions, our knowledge to the global mechanism is still limited. Here we performed a quantitative phosphoproteomics study to systematically present the synergistic regulation of INS-1E cell phosphoproteome mediated by glucose and GLP-1. We generated the largest pancreatic β-cell phosphoproteome by identifying 25,327 accurately localized phosphorylation sites on 5,389 proteins. Our results discovered several novel kinases regulated by glucose, GLP-1 or their synergism, and some of these kinases might act as downstream molecules of GLP-1 mediated PKA signaling cascade. A few phosphosites were regulated by both GLP-1 and glucose alone, and these target proteins were highly related to their biological function on pancreatic β-cells. Finally, we found glucose and GLP-1 executed their synergistic effect at multiple levels, especially at pathway level. Both GLP-1 and glucose participated in regulating every single step of the secretion pathway, and systematically synergized their effects in inducing insulin secretion.


Associations among circulating sphingolipids, β-cell function, and risk of developing type 2 diabetes: A population-based cohort study in China.

  • Huan Yun‎ et al.
  • PLoS medicine‎
  • 2020‎

Animal studies suggest vital roles of sphingolipids, especially ceramides, in the pathogenesis of type 2 diabetes (T2D) via pathways involved in insulin resistance, β-cell dysfunction, and inflammation, but human studies are limited. We aimed to evaluate the associations of circulating sphingolipids with incident T2D and to explore underlying mechanisms.


Serum BDNF levels and the antidepressant effects of electroconvulsive therapy with ketamine anaesthesia: a preliminary study.

  • Wei Zheng‎ et al.
  • PeerJ‎
  • 2021‎

To firstly examine the relationship between serum brain-derived neurotrophic factor (BDNF) levels and antidepressant response to ketamine as an anaesthesia in electroconvulsive therapy (ECT) in Chinese patients with treatment-refractory depression (TRD).


Inhibition of a Novel CLK1-THRAP3-PPARγ Axis Improves Insulin Sensitivity.

  • Zhenguo Wang‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Increasing energy expenditure by promoting "browning" in adipose tissues is a promising strategy to prevent obesity and associated diabetes. To uncover potential targets of cold exposure, which induces energy expenditure, we performed phosphoproteomics profiling in brown adipose tissue of mice housed in mild cold environment at 16°C. We identified CDC2-like kinase 1 (CLK1) as one of the kinases that were significantly downregulated by mild cold exposure. In addition, genetic knockout of CLK1 or chemical inhibition in mice ameliorated diet-induced obesity and insulin resistance at 22°C. Through proteomics, we uncovered thyroid hormone receptor-associated protein 3 (THRAP3) as an interacting partner of CLK1, further confirmed by co-immunoprecipitation assays. We further demonstrated that CLK1 phosphorylates THRAP3 at Ser243, which is required for its regulatory interaction with phosphorylated peroxisome proliferator-activated receptor gamma (PPARγ), resulting in impaired adipose tissue browning and insulin sensitivity. These data suggest that CLK1 plays a critical role in controlling energy expenditure through the CLK1-THRAP3-PPARγ axis.


Natural variation in a type-A response regulator confers maize chilling tolerance.

  • Rong Zeng‎ et al.
  • Nature communications‎
  • 2021‎

Maize (Zea mays L.) is a cold-sensitive species that often faces chilling stress, which adversely affects growth and reproduction. However, the genetic basis of low-temperature adaptation in maize remains unclear. Here, we demonstrate that natural variation in the type-A Response Regulator 1 (ZmRR1) gene leads to differences in chilling tolerance among maize inbred lines. Association analysis reveals that InDel-35 of ZmRR1, encoding a protein harboring a mitogen-activated protein kinase (MPK) phosphorylation residue, is strongly associated with chilling tolerance. ZmMPK8, a negative regulator of chilling tolerance, interacts with and phosphorylates ZmRR1 at Ser15. The deletion of a 45-bp region of ZmRR1 harboring Ser15 inhibits its degradation via the 26 S proteasome pathway by preventing its phosphorylation by ZmMPK8. Transcriptome analysis indicates that ZmRR1 positively regulates the expression of ZmDREB1 and Cellulose synthase (CesA) genes to enhance chilling tolerance. Our findings thus provide a potential genetic resource for improving chilling tolerance in maize.


The downregulated drug-metabolism related ALDH6A1 serves as predictor for prognosis and therapeutic immune response in gastric cancer.

  • Yuan Cai‎ et al.
  • Aging‎
  • 2022‎

Drug metabolism-associated genes have been clarified to play a vital role in the process of cancer cell growth and migration. Nevertheless, the correlation between drug metabolism-associated genes and gastric cancer (GC) has not been fully explored and clarified. This paper has focused on the role of aldehyde dehydrogenase 6 family member A1 (ALDH6A1), a drug metabolism-associated gene, in the immune regulation and prognosis of GC patients. Using several bioinformatics platforms and immunohistochemistry (IHC) assay, we found that ALDH6A1 expression was significantly down-regulated in GC tissues. Moreover, higher expression of ALDH6A1 was related to the better prognosis of GC patients. ALDH6A1 was also found to be involved in the regulation of several immune-associated signatures, including immunoinhibitors. In conclusion, the above results have concluded that aberrant expression of ALDH6A1 might be served as the promising predictor for prognosis and clinical immunotherapy response in GC patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: