Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium.

  • Kaatje Lenaerts‎ et al.
  • BMC genomics‎
  • 2007‎

In vitro models are indispensable study objects in the fields of cell and molecular biology, with advantages such as accessibility, homogeneity of the cell population, reproducibility, and growth rate. The Caco-2 cell line, originating from a colon carcinoma, is a widely used in vitro model for small intestinal epithelium. Cancer cells have an altered metabolism, making it difficult to infer their representativity for the tissue from which they are derived. This study was designed to compare the protein expression pattern of Caco-2 cells with the patterns of intestinal epithelial cells from human small and large intestine. HT-29 intestinal cells, Hep G2 liver cells and TE 671 muscle cells were included too, the latter two as negative controls.


Glucose Restriction Plus Refeeding in Vitro Induce Changes of the Human Adipocyte Secretome with an Impact on Complement Factors and Cathepsins.

  • Qi Qiao‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Adipose tissue is a major endocrine organ capable of secreting adipokines with a role in whole-body metabolism. Changes in the secretome profile during the development of obesity is suspected to contribute to the risk of health complications such as those associated with weight regain after weight loss. However, the number of studies on weight regain is limited and secretome changes during weight regain have hardly been investigated. In an attempt to generate leads for in vivo studies, we have subjected human Simpson Golabi Behmel Syndrome adipocytes to glucose restriction (GR) followed by refeeding (RF) as an in vitro surrogate for weight regain after weight loss. Using LC-MS/MS, we compared the secreted protein profile after GR plus RF with that of normal feeding (NF) to assess the consequences of GR plus RF. We identified 338 secreted proteins of which 49 were described for the first time as being secreted by adipocytes. In addition, comparison between NF and GR plus RF showed 39 differentially secreted proteins. Functional classification revealed GR plus RF-induced changes of enzymes for extracellular matrix modification, complement system factors, cathepsins, and several proteins related to Alzheimer's disease. These observations can be used as clues to investigate metabolic consequences of weight regain, weight cycling or intermittent fasting.


Reorganization of the nuclear lamina and cytoskeleton in adipogenesis.

  • Valerie L R M Verstraeten‎ et al.
  • Histochemistry and cell biology‎
  • 2011‎

A thorough understanding of fat cell biology is necessary to counter the epidemic of obesity. Although molecular pathways governing adipogenesis are well delineated, the structure of the nuclear lamina and nuclear-cytoskeleton junction in this process are not. The identification of the 'linker of nucleus and cytoskeleton' (LINC) complex made us consider a role for the nuclear lamina in adipose conversion. We herein focused on the structure of the nuclear lamina and its coupling to the vimentin network, which forms a cage-like structure surrounding individual lipid droplets in mature adipocytes. Analysis of a mouse and human model system for fat cell differentiation showed fragmentation of the nuclear lamina and subsequent loss of lamins A, C, B1 and emerin at the nuclear rim, which coincides with reorganization of the nesprin-3/plectin/vimentin complex into a network lining lipid droplets. Upon 18 days of fat cell differentiation, the fraction of adipocytes expressing lamins A, C and B1 at the nuclear rim increased, though overall lamin A/C protein levels were low. Lamin B2 remained at the nuclear rim throughout fat cell differentiation. Light and electron microscopy of a subcutaneous adipose tissue specimen showed striking indentations of the nucleus by lipid droplets, suggestive for an increased plasticity of the nucleus due to profound reorganization of the cellular infrastructure. This dynamic reorganization of the nuclear lamina in adipogenesis is an important finding that may open up new venues for research in and treatment of obesity and nuclear lamina-associated lipodystrophy.


Lutein Leads to a Decrease of Factor D Secretion by Cultured Mature Human Adipocytes.

  • Yuan Tian‎ et al.
  • Journal of ophthalmology‎
  • 2015‎

Purpose. Complement plays an important role in the pathogenesis of age related macular degeneration (AMD) and trials are currently being conducted to investigate the effect of complement inhibition on AMD progression. We previously found that the plasma level of factor D (FD), which is the rate limiting enzyme of the complement alternative pathway, was significantly decreased following lutein supplementation. FD is synthesized by adipose tissue, which is also the main storage site of lutein. In view of these findings we tested the hypothesis whether lutein could affect FD synthesis by adipocytes. Methods. A cell line of mature human adipocytes was incubated with 50 μg/mL lutein for 24 and 48 h, whereafter FD mRNA and protein expression were measured. Results. Lutein significantly inhibited adipocyte FD mRNA expression and FD protein release into adipocyte culture supernatants. Conclusions. Our earlier observations showing that a daily lutein supplement in individuals with early signs of AMD lowered the level of circulating FD might be caused by blocking adipocyte FD production.


An in vitro model for hypertrophic adipocytes: Time-dependent adipocyte proteome and secretome changes under high glucose and high insulin conditions.

  • Qi Qiao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Obesity is the consequence of a positive energy balance and characterized by enlargement of the adipose tissue, which in part is due to hyperplasia and hypertrophy of the adipocytes. Not much is known about the transition of normal mature adipocytes to the hypertrophic state, which in vivo is very hard to study. Here, we have maintained mature human SGBS cells as a surrogate for adipocytes, changes of morphological and molecular metabolism of the adipocytes were monitored over the first 4 days and the last 4 days. In total, 393 cellular proteins and 246 secreted proteins were identified for further analysis. During the first 4 days of high glucose and insulin, the adipocytes seemed to prefer pyruvate as energy source, whereas beta-oxidation was down-regulated supporting lipid loading. Over time, lipid droplet fusion instead of lipid uptake became relatively important for growth of lipid droplets during the last 4 days. Moreover, ECM production shifted towards ECM turnover by the up-regulation of proteases over eight days. The present in vitro system provides insight into the metabolic changes of adipocytes under conditions of high glucose and insulin, which may help to understand the process of in vivo adipocyte hypertrophy during the development of obesity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: