Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Genetics-based manipulation of adipose tissue sympathetic innervation.

  • Marie François‎ et al.
  • Physiology & behavior‎
  • 2018‎

There is renewed interest in leveraging the thermogenic capacity of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) to improve energy balance and prevent obesity. In addition to these effects on energy expenditure, both BAT and WAT secrete large numbers of hormones and cytokines that play important roles in maintaining metabolic health. Both BAT and WAT are densely innervated by the sympathetic nervous system (SNS) and this innervation is crucial for BAT thermogenesis and WAT browning, making it a potentially interesting target for manipulating energy balance and treatment of obesity and metabolic disease. Peripheral neuromodulation in the form of electrical manipulation of the SNS and parasympathetic nervous system (PSNS) has been used for the management of pain and many other conditions, but progress is hampered by lack of detailed knowledge of function-specific neurons and nerves innervating particular organs and tissues. Therefore, the goal of the National Institutes of Health (NIH) Common Fund project "Stimulating Peripheral Activity to Relieve Conditions (SPARC)" is to comprehensively map both anatomical and neurochemical aspects of the peripheral nervous system in animal model systems to ultimately guide optimal neuromodulation strategies in humans. Compared to electrical manipulation, neuron-specific opto- and chemogenetic manipulation, now being extensively used to decode the function of brain circuits, will further increase the functional specificity of peripheral neuromodulation.


Sympathetic innervation of the interscapular brown adipose tissue in mouse.

  • Marie François‎ et al.
  • Annals of the New York Academy of Sciences‎
  • 2019‎

The recent discovery of significant brown fat depots in adult humans has revived discussion of exploiting brown fat thermogenesis in the control of energy balance and body weight. The sympathetic nervous system (SNS) has a key role in the activation of brown fat and functional mapping of its components will be crucial for the development of specific neuromodulation techniques. The mouse is an important species used for molecular genetic modulations, but its small size is not ideal for anatomical dissections, thus brown fat innervation studies are mostly available in larger rodents such as rats and hamsters. Here, we use pseudorabies virus retrograde tracing, whole tissue clearing, and confocal/light sheet microscopy to show the location of pre- and postganglionic neurons selectively innervating the interscapular brown adipose tissue (iBAT) in the mouse. Using iDISCO whole tissue clearing, we identified iBAT projecting postganglionic neurons in the caudal parts of the ipsilateral fused stellate/T1, as well as the T2-T5 sympathetic chain ganglia and preganglionic neurons between levels T2 and T6 of the ipsilateral spinal cord. The methodology enabled high-resolution imaging and 3D rendering of the specific SNS innervation of iBAT and will be helpful to discern peripheral nervous system innervation of other organs and tissues.


Sympathetic innervation of inguinal white adipose tissue in the mouse.

  • Clara Huesing‎ et al.
  • The Journal of comparative neurology‎
  • 2021‎

Adipose tissue plays an important role in metabolic homeostasis and its prominent role as endocrine organ is now well recognized. Adipose tissue is controlled via the sympathetic nervous system (SNS). New viral, molecular-genetic tools will soon allow a more detailed study of adipose tissue innervation in metabolic function, yet, the precise anatomical extent of preganglionic and postganglionic inputs to the inguinal white adipose tissue (iWAT) is limited. Furthermore, several viral, molecular-genetic tools will require the use of cre/loxP mouse models, while the available studies on sympathetic iWAT innervation were established in larger species. In this study, we generated a detailed map for the sympathetic innervation of iWAT in male and female mice. We adapted iDISCO tissue clearing to process large, whole-body specimens for an unprecedented view of the natural abdominal SNS. Combined with pseudorabies virus retrograde tracing from the iWAT, we defined the preganglionic and postganglionic sympathetic input to iWAT. We used fluorescence-guided anatomical dissections of sympathetic nerves in reporter mice to further clarify that postganglionic axons connect to iWAT via lateral cutaneous rami (dorsolumbar iWAT portion) and the lumbar plexus (inguinal iWAT portion). Importantly, these rami carry axons that branch to iWAT, as well as axons that travel further to innervate the skin and vasculature, and their functional impact will require consideration in denervation studies. Our study may serve as a comprehensive map for future experiments that employ virally driven neuromodulation techniques to predict anatomy-based viral labeling.


Organization of sympathetic innervation of interscapular brown adipose tissue in the mouse.

  • Clara Huesing‎ et al.
  • The Journal of comparative neurology‎
  • 2022‎

The interscapular brown adipose tissue (iBAT) is under sympathetic control, and recent studies emphasized the importance of efferent sympathetic and afferent sensory or humoral feedback systems to regulate adipose tissue function and overall metabolic health. However, functional studies of the sympathetic nervous system in the mouse are limited, because details of anatomy and fine structure are lacking. Here, we used reporter mice for tyrosine hydroxylase expressing neurons (TH:tomato mice), iDISCO tissue clearance, confocal, lightsheet, and electron microscopy to clarify that (a) iBAT receives sympathetic input via dorsal rami (instead of often cited intercostal nerves); (b) dorsal rami T1-T5 correspond to the postganglionic input from sympathetic chain ganglia (stellate/T1-T5); (c) dorsal rami serve as conduits for sympathetic axons that branch off in finer nerve bundles to enter iBAT; (d) axonal varicosities show strong differential innervation of brown (dense innervation) versus white (sparse innervation) adipocytes, that surround the core iBAT in the mouse and are intermingled in human adipose tissues, (e) axonal varicosities can form neuro-adipocyte junctions with brown adipocytes. Taken together, we demonstrate that sympathetic iBAT innervation is organized by specific nerves and terminal structures that can be surgically and genetically accessed for neuromodulatory purposes.


Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia.

  • Hayden Torres‎ et al.
  • American journal of physiology. Regulatory, integrative and comparative physiology‎
  • 2021‎

The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging. Despite providing major postganglionic inputs to abdominal organs, limited data are available about the mouse celiac-superior mesenteric complex. We used tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DbH) reporter mice to visualize abdominal prevertebral ganglia. We found that both the TH and DbH reporter mice are useful models for identification of ganglia and nerve bundles. We further tested if the celiac-superior mesenteric complex provides differential inputs to the mouse kidney and liver. The retrograde viral tracer, pseudorabies virus (PRV)-152 was injected into the cortex of the left kidney or the main lobe of the liver to identify kidney-projecting and liver-projecting neurons in the celiac-superior mesenteric complex. iDISCO immunostaining and tissue clearing were used to visualize unprecedented anatomical detail of kidney-related and liver-related postganglionic neurons in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia compared with TH-positive neurons. Kidney-projecting neurons were restricted to the suprarenal and aorticorenal ganglia, whereas only sparse labeling was observed in the celiac-superior mesenteric complex. In contrast, liver-projecting postganglionic neurons were observed in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia, suggesting spatial separation between the sympathetic innervation of the mouse kidney and liver.


Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies.

  • Pradeep S Rajendran‎ et al.
  • Nature communications‎
  • 2019‎

Heart rate is under the precise control of the autonomic nervous system. However, the wiring of peripheral neural circuits that regulate heart rate is poorly understood. Here, we develop a clearing-imaging-analysis pipeline to visualize innervation of intact hearts in 3D and employed a multi-technique approach to map parasympathetic and sympathetic neural circuits that control heart rate in mice. We identify cholinergic neurons and noradrenergic neurons in an intrinsic cardiac ganglion and the stellate ganglia, respectively, that project to the sinoatrial node. We also report that the heart rate response to optogenetic versus electrical stimulation of the vagus nerve displays different temporal characteristics and that vagal afferents enhance parasympathetic and reduce sympathetic tone to the heart via central mechanisms. Our findings provide new insights into neural regulation of heart rate, and our methodology to study cardiac circuits can be readily used to interrogate neural control of other visceral organs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: