Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Expression of purinergic receptors in the hypothalamus of the rat is modified by reduced food availability.

  • Bertolt Seidel‎ et al.
  • Brain research‎
  • 2006‎

ATP-sensitive P2 receptors are suggested to play an important role in the cerebral signal transduction. We examined the expression of the P2Y1 receptor and the possibly downstream-related neuronal nitric oxide synthase (nNOS) in the hypothalamus of rats food-restricted for 3 or 10 days and rats refed after a restriction of 10 days. The restriction caused a reduction of the body weight and plasma triacylglyceride, an increase of non-esterified fatty acid levels correlating with a decrease of leptin levels and an enhancement of plasma corticosterone. All changes returned to basal levels after refeeding. The restriction induced an enhanced intake within 30 min after food presentation and a reduction in the latency. Interestingly, the latter was not abolished by refeeding. The daily food intake induced by refeeding was enhanced at the first day only. The expression of hypothalamic P2Y1 receptor/nNOS mRNA and protein and of leptin receptor mRNA were enhanced after restricted feeding. These changes were abolished after 3 days of refeeding. Immunofluorescence studies indicated that P2Y1 receptor and nNOS immunoreactivities are present in the dorsomedial, ventromedial and lateral hypothalamus and in the nucleus arcuatus. P2Y1 receptor-positive cells were partially also nNOS-positive. The P2Y1 receptor labeling was restricted to cell bodies of obviously non-glial cells, whereas nNOS labeling could be detected also at cellular processes of these cells. In the nucleus arcuatus, astrocytes were identified, expressing P2Y1 receptors at cell bodies and cellular processes. The data suggest that restricted feeding may enhance the sensitivity of the hypothalamus to extracellular ADP/ATP by regulation of the expression of P2Y1 receptors and possibly of their signal transduction pathway via nitric oxide production.


BAC transgenic mice to study the expression of P2X2 and P2Y1 receptors.

  • Marcus Grohmann‎ et al.
  • Purinergic signalling‎
  • 2021‎

Extracellular purines are important signaling molecules involved in numerous physiological and pathological processes via the activation of P2 receptors. Information about the spatial and temporal P2 receptor (P2R) expression and its regulation remains crucial for the understanding of the role of P2Rs in health and disease. To identify cells carrying P2X2Rs in situ, we have generated BAC transgenic mice that express the P2X2R subunits as fluorescent fusion protein (P2X2-TagRFP). In addition, we generated a BAC P2Y1R TagRFP reporter mouse expressing a TagRFP reporter for the P2RY1 gene expression. We demonstrate expression of the P2X2R in a subset of DRG neurons, the brain stem, the hippocampus, as well as on Purkinje neurons of the cerebellum. However, the weak fluorescence intensity in our P2X2R-TagRFP mouse precluded tracking of living cells. Our P2Y1R reporter mice confirmed the widespread expression of the P2RY1 gene in the CNS and indicate for the first time P2RY1 gene expression in mouse Purkinje cells, which so far has only been described in rats and humans. Our P2R transgenic models have advanced the understanding of purinergic transmission, but BAC transgenic models appeared not always to be straightforward and permanent reliable. We noticed a loss of fluorescence intensity, which depended on the number of progeny generations. These problems are discussed and may help to provide more successful animal models, even if in future more versatile and adaptable nuclease-mediated genome-editing techniques will be the methods of choice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: