Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

A Facile Approach of Fabricating Bifunctional Catalysts for Redox Applications by Uniformly Immobilized Metallic Nanoparticles on NiCr LDH.

  • Mosaed S Alhumaimess‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2023‎

This study discloses the development of NiCr LDH, Ag@NiCr LDH, and Pd@NiCr LDH bifunction catalysts using a hydrothermal coprecipitation method followed by sol immobilization of metallic nanoparticles. The structures and morphologies of the synthesized nanocomposites were analyzed using FTIR, XRD, XPS, BET, FESEM-EDX, and HRTEM. The catalytic effectiveness of the samples was evaluated by tracking the progression of NaBH4-mediated nitrobenzene (NB) reduction to aniline and CO oxidation using UV-visible spectrophotometry and an infrared gas analyzer, respectively. Pd@NiCr LDH displayed much higher performance for both reactions than the bare NiCr LDH. The catalyst Pd@NiCr LDH showed robust catalytic activity in both the oxidation of carbon monoxide (T50% (136.1 °C) and T100% (200.2 °C)) and NaBH4-mediated nitrobenzene reduction (98.7% conversion and 0.365 min-1 rate constant). The results disclose that the Ni2+@ Cr3+/Cr6+ @Pd° ion pairs inside the LDH act as a charge transfer center and hence significantly enhance the catalytic performance. As a result, this research offers the novel NiCr LDH catalyst as a bifunctional catalyst for air depollution control and the organic transformation process.


Efficient Dual-Function Catalyst: Palladium-Copper Nanoparticles Immobilized on Co-Cr LDH for Seamless Aerobic Oxidation of Benzyl Alcohol and Nitrobenzene Reduction.

  • Linah A Alzarea‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2023‎

Layered double hydroxides (LDHs) present exciting possibilities across various industries, ranging from catalytic applications to water remediation. By immobilizing nanoparticles, LDHs' characteristics and functionality can be enhanced, allowing for synergetic interactions that further expand their potential uses. A simple chemical method was developed to produce well-dispersed Pd-Cu NPs on a Co-Cr LDH support using a combination of in situ coprecipitation/hydrothermal and sol-immobilization techniques. The Pd-Cu@Co-Cr LDH catalysts was obtained, showing its catalytic activity in promoting the aerobic oxidation of alcohols and enabling the reduction of nitro-compounds through NaBH4 mediation. The physicochemical properties of the prepared catalyst were comprehensively investigated utilizing a range of analytical techniques, comprising FTIR, XRD, XPS, TGA, nitrogen adsorption isotherm, FESEM, and HRTEM-EDX. The findings showed the significance of immobilizing the bimetallic Pd-Cu nanoparticles on the Co-Cr LDH via an exceptional performance in the aerobic oxidation of benzyl alcohol (16% conversion, 99.9% selectivity to benzaldehyde) and the reduction of nitrobenzene (98.2% conversion, rate constant of 0.0921 min-1). The improved catalytic efficacy in benzyl alcohol oxidation and nitrobenzene reduction on the Pd-Cu@Co-Cr LDH catalyst is attributed to the uniform distribution and small size of the Pd-Cu NPs as active sites on the Co-Cr LDH surface. The prepared catalyst demonstrated exceptional stability during repeated runs. This study paves the way for multiple opportunities in tailoring, producing, and precisely controlling catalysts for various organic transformation reactions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: