Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Comparative genomics of cell envelope components in mycobacteria.

  • Ruma Banerjee‎ et al.
  • PloS one‎
  • 2011‎

Mycobacterial cell envelope components have been a major focus of research due to their unique features that confer intrinsic resistance to antibiotics and chemicals apart from serving as a low-permeability barrier. The complex lipids secreted by Mycobacteria are known to evoke/repress host-immune response and thus contribute to its pathogenicity. This study focuses on the comparative genomics of the biosynthetic machinery of cell wall components across 21-mycobacterial genomes available in GenBank release 179.0. An insight into survival in varied environments could be attributed to its variation in the biosynthetic machinery. Gene-specific motifs like 'DLLAQPTPAW' of ufaA1 gene, novel functional linkages such as involvement of Rv0227c in mycolate biosynthesis; Rv2613c in LAM biosynthesis and Rv1209 in arabinogalactan peptidoglycan biosynthesis were detected in this study. These predictions correlate well with the available mutant and coexpression data from TBDB. It also helped to arrive at a minimal functional gene set for these biosynthetic pathways that complements findings using TraSH.


Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response.

  • Xing-Huang Gao‎ et al.
  • eLife‎
  • 2015‎

The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic β cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism.


The Human Knockout Gene CLYBL Connects Itaconate to Vitamin B12.

  • Hongying Shen‎ et al.
  • Cell‎
  • 2017‎

CLYBL encodes a ubiquitously expressed mitochondrial enzyme, conserved across all vertebrates, whose cellular activity and pathway assignment are unknown. Its homozygous loss is tolerated in seemingly healthy individuals, with reduced circulating B12 levels being the only and consistent phenotype reported to date. Here, by combining enzymology, structural biology, and activity-based metabolomics, we report that CLYBL operates as a citramalyl-CoA lyase in mammalian cells. Cells lacking CLYBL accumulate citramalyl-CoA, an intermediate in the C5-dicarboxylate metabolic pathway that includes itaconate, a recently identified human anti-microbial metabolite and immunomodulator. We report that CLYBL loss leads to a cell-autonomous defect in the mitochondrial B12 metabolism and that itaconyl-CoA is a cofactor-inactivating, substrate-analog inhibitor of the mitochondrial B12-dependent methylmalonyl-CoA mutase (MUT). Our work de-orphans the function of human CLYBL and reveals that a consequence of exposure to the immunomodulatory metabolite itaconate is B12 inactivation.


Development of a diagnostic compatible BCG vaccine against Bovine tuberculosis.

  • Aneesh Chandran‎ et al.
  • Scientific reports‎
  • 2019‎

Bovine tuberculosis (BTB) caused by Mycobacterium bovis remains a major problem in both the developed and developing countries. Control of BTB in the UK is carried out by test and slaughter of infected animals, based primarily on the tuberculin skin test (PPD). Vaccination with the attenuated strain of the M. bovis pathogen, BCG, is not used to control bovine tuberculosis in cattle at present, due to its variable efficacy and because it interferes with the PPD test. Diagnostic tests capable of Differentiating Infected from Vaccinated Animals (DIVA) have been developed that detect immune responses to M. bovis antigens absent in BCG; but these are too expensive and insufficiently sensitive to be used for BTB control worldwide. To address these problems we aimed to generate a synergistic vaccine and diagnostic approach that would permit the vaccination of cattle without interfering with the conventional PPD-based surveillance. The approach was to widen the pool of M. bovis antigens that could be used as DIVA targets, by identifying antigenic proteins that could be deleted from BCG without affecting the persistence and protective efficacy of the vaccine in cattle. Using transposon mutagenesis we identified genes that were essential and those that were non-essential for persistence in bovine lymph nodes. We then inactivated selected immunogenic, but non-essential genes in BCG Danish to create a diagnostic-compatible triple knock-out ΔBCG TK strain. The protective efficacy of the ΔBCG TK was tested in guinea pigs experimentally infected with M. bovis by aerosol and found to be equivalent to wild-type BCG. A complementary diagnostic skin test was developed with the antigenic proteins encoded by the deleted genes which did not cross-react in vaccinated or in uninfected guinea pigs. This study demonstrates the functionality of a new and improved BCG strain which retains its protective efficacy but is diagnostically compatible with a novel DIVA skin test that could be implemented in control programmes.


Genetic diversity of 'Very Important Pharmacogenes' in two South-Asian populations.

  • Neeraj Bharti‎ et al.
  • PeerJ‎
  • 2021‎

Reliable identification of population-specific variants is important for building the single nucleotide polymorphism (SNP) profile. In this study, genomic variation using allele frequency differences of pharmacologically important genes for Gujarati Indians in Houston (GIH) and Indian Telugu in the U.K. (ITU) from the 1000 Genomes Project vis-à-vis global population data was studied to understand its role in drug response.


Disease-causing cystathionine β-synthase linker mutations impair allosteric regulation.

  • Joseph V Roman‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Cystathionine β-synthase (CBS) catalyzes the committing step in the transsulfuration pathway, which is important for clearing homocysteine and furnishing cysteine. The transsulfuration pathway also generates H2S, a signaling molecule. CBS is a modular protein with a heme and pyridoxal phosphate-binding catalytic core, which is separated by a linker region from the C-terminal regulatory domain that binds S-adenosylmethionine (AdoMet), an allosteric activator. Recent cryo-EM structures reveal that CBS exists in a fibrillar form and undergoes a dramatic architectural rearrangement between the basal and AdoMet-bound states. CBS is the single most common locus of mutations associated with homocystinuria, and, in this study, we have characterized three clinical variants (K384E/N and M391I), which reside in the linker region. The native fibrillar form is destabilized in the variants, and differences in their limited proteolytic fingerprints also reveal conformational alterations. The crystal structure of the truncated K384N variant, lacking the regulatory domain, reveals that the overall fold of the catalytic core is unperturbed. M391I CBS exhibits a modest (1.4-fold) decrease while the K384E/N variants exhibit a significant (∼8-fold) decrease in basal activity, which is either unresponsive to or inhibited by AdoMet. Pre-steady state kinetic analyses reveal that the K384E/N substitutions exhibit pleiotropic effects and that the differences between them are expressed in the second half reaction, that is, homocysteine binding and reaction with the aminoacrylate intermediate. Together, these studies point to an important role for the linker in stabilizing the higher-order oligomeric structure of CBS and enabling AdoMet-dependent regulation.


Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation.

  • Rudolf Wedmann‎ et al.
  • Chemical science‎
  • 2016‎

Hydrogen sulfide (H2S) has emerged as a signalling molecule capable of regulating several important physiological functions such as blood pressure, neurotransmission and inflammation. The mechanisms behind these effects are still largely elusive and oxidative posttranslational modification of cysteine residues (protein persulfidation or S-sulfhydration) has been proposed as the main pathway for H2S-induced biological and pharmacological effects. As a signalling mechanism, persulfidation has to be controlled. Using an improved tag-switch assay for persulfide detection we show here that protein persulfide levels are controlled by the thioredoxin system. Recombinant thioredoxin showed an almost 10-fold higher reactivity towards cysteine persulfide than towards cystine and readily cleaved protein persulfides as well. This reaction resulted in H2S release suggesting that thioredoxin could be an important regulator of H2S levels from persulfide pools. Inhibition of the thioredoxin system caused an increase in intracellular persulfides, highlighting thioredoxin as a major protein depersulfidase that controls H2S signalling. Finally, using plasma from HIV-1 patients that have higher circulatory levels of thioredoxin, we could prove depersulfidase role in vivo.


Transposon libraries identify novel Mycobacterium bovis BCG genes involved in the dynamic interactions required for BCG to persist during in vivo passage in cattle.

  • Tom A Mendum‎ et al.
  • BMC genomics‎
  • 2019‎

BCG is the most widely used vaccine of all time and remains the only licensed vaccine for use against tuberculosis in humans. BCG also protects other species such as cattle against tuberculosis, but due to its incompatibility with current tuberculin testing regimens remains unlicensed. BCG's efficacy relates to its ability to persist in the host for weeks, months or even years after vaccination. It is unclear to what degree this ability to resist the host's immune system is maintained by a dynamic interaction between the vaccine strain and its host as is the case for pathogenic mycobacteria.


Murine colitis is mediated by vimentin.

  • Nirit Mor-Vaknin‎ et al.
  • Scientific reports‎
  • 2013‎

Vimentin, an abundant intermediate filament protein, presumably has an important role in stabilizing intracellular architecture, but its function is otherwise poorly understood. In a vimentin knockout (Vim KO) mouse model, we note that Vim KO mice challenged with intraperitoneal Escherichia coli control bacterial infection better than do wild-type (WT) mice. In vitro, Vim KO phagocytes show significantly increased capacity to mediate bacterial killing by abundant production of reactive oxygen species (ROS) and nitric oxides, likely due to interactions with the p47phox active subunit of NADPH oxidase. In acute colitis induced by dextran sodium sulfate (DSS), Vim KO mice develop significantly less gut inflammation than do WT mice. Further, Vim KO mice have markedly decreased bacterial extravasation in the setting of DSS-induced acute colitis, consistent with decreased intestinal disease. Our results suggest that vimentin impedes bacterial killing and production of ROS, thereby contributing to the pathogenesis of acute colitis.


Aging is associated with increased regulatory T-cell function.

  • Sanjay K Garg‎ et al.
  • Aging cell‎
  • 2014‎

Regulatory T-cell (Treg, CD4(+) CD25(+)) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T-cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3-4 months) and aged (18-20 months) C57BL/6 mice. DNA from CD4(+) T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T-cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling-mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL-10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T-cell activity. Taken together, these results reveal a potential mechanism of higher Treg-mediated activity that may contribute to increased immune suppression with age.


Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B12 delivery and repair.

  • Romila Mascarenhas‎ et al.
  • Nature communications‎
  • 2023‎

G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. The G-protein, MMAA, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B12-dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the complex assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nano-assembly, which reveals a dramatic 180° rotation of the B12 domain, exposing it to solvent. The complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the MMAA-MMUT interfaces we identify here.


Protein-aggregating ability of different protoporphyrin-IX nanostructures is dependent on their oxidation and protein-binding capacity.

  • Dhiman Maitra‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Porphyrias are rare blood disorders caused by genetic defects in the heme biosynthetic pathway and are associated with the accumulation of high levels of porphyrins that become cytotoxic. Porphyrins, due to their amphipathic nature, spontaneously associate into different nanostructures, but very little is known about the cytotoxic effects of these porphyrin nanostructures. Previously, we demonstrated the unique ability of fluorescent biological porphyrins, including protoporphyrin-IX (PP-IX), to cause organelle-selective protein aggregation, which we posited to be a major mechanism by which fluorescent porphyrins exerts their cytotoxic effect. Herein, we tested the hypothesis that PP-IX-mediated protein aggregation is modulated by different PP-IX nanostructures via a mechanism that depends on their oxidizing potential and protein-binding ability. UV-visible spectrophotometry showed pH-mediated reversible transformations of PP-IX nanostructures. Biochemical analysis showed that PP-IX nanostructure size modulated PP-IX-induced protein oxidation and protein aggregation. Furthermore, albumin, the most abundant serum protein, preferentially binds PP-IX dimers and enhances their oxidizing ability. PP-IX binding quenched albumin intrinsic fluorescence and oxidized His-91 residue to Asn/Asp, likely via a previously described photo-oxidation mechanism for other proteins. Extracellular albumin protected from intracellular porphyrinogenic stress and protein aggregation by acting as a PP-IX sponge. This work highlights the importance of PP-IX nanostructures in the context of porphyrias and offers insights into potential novel therapeutic approaches.


Analysis of H3K4me3-ChIP-Seq and RNA-Seq data to understand the putative role of miRNAs and their target genes in breast cancer cell lines.

  • Aneesh Kotipalli‎ et al.
  • Genomics & informatics‎
  • 2021‎

Breast cancer is one of the leading causes of cancer in women all over the world and accounts for ~25% of newly observed cancers in women. Epigenetic modifications influence differential expression of genes through non-coding RNA and play a crucial role in cancer regulation. In the present study, epigenetic regulation of gene expression by in-silico analysis of histone modifications using chromatin immunoprecipitation sequencing (ChIP-Seq) has been carried out. Histone modification data of H3K4me3 from one normal-like and four breast cancer cell lines were used to predict miRNA expression at the promoter level. Predicted miRNA promoters (based on ChIP-Seq) were used as a probe to identify gene targets. Five triple-negative breast cancer (TNBC)-specific miRNAs (miR153-1, miR4767, miR4487, miR6720, and miR-LET7I) were identified and corresponding 13 gene targets were predicted. Eight miRNA promoter peaks were predicted to be differentially expressed in at least three breast cancer cell lines (miR4512, miR6791, miR330, miR3180-3, miR6080, miR5787, miR6733, and miR3613). A total of 44 gene targets were identified based on the 3'-untranslated regions of downregulated mRNA genes that contain putative binding targets to these eight miRNAs. These include 17 and 15 genes in luminal-A type and TNBC respectively, that have been reported to be associated with breast cancer regulation. Of the remaining 12 genes, seven (A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, and ZNF608) show similar relative expression profiles in large patient samples and other breast cancer cell lines thereby giving insight into predicted role of H3K4me3 mediated gene regulation via the miRNA-mRNA axis.


Bivalent molecular mimicry by ADP protects metal redox state and promotes coenzyme B12 repair.

  • Harsha Gouda‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Control over transition metal redox state is essential for metalloprotein function and can be achieved via coordination chemistry and/or sequestration from bulk solvent. Human methylmalonyl-Coenzyme A (CoA) mutase (MCM) catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA using 5'-deoxyadenosylcobalamin (AdoCbl) as a metallocofactor. During catalysis, the occasional escape of the 5'-deoxyadenosine (dAdo) moiety leaves the cob(II)alamin intermediate stranded and prone to hyperoxidation to hydroxocobalamin, which is recalcitrant to repair. In this study, we have identified the use of bivalent molecular mimicry by ADP, coopting the 5'-deoxyadenosine and diphosphate moieties in the cofactor and substrate, respectively, to protect against cob(II)alamin overoxidation on MCM. Crystallographic and electron paramagnetic resonance (EPR) data reveal that ADP exerts control over the metal oxidation state by inducing a conformational change that seals off solvent access, rather than by switching five-coordinate cob(II)alamin to the more air stable four-coordinate state. Subsequent binding of methylmalonyl-CoA (or CoA) promotes cob(II)alamin off-loading from MCM to adenosyltransferase for repair. This study identifies an unconventional strategy for controlling metal redox state by an abundant metabolite to plug active site access, which is key to preserving and recycling a rare, but essential, metal cofactor.


The hepatic compensatory response to elevated systemic sulfide promotes diabetes.

  • Roderick N Carter‎ et al.
  • Cell reports‎
  • 2021‎

Impaired hepatic glucose and lipid metabolism are hallmarks of type 2 diabetes. Increased sulfide production or sulfide donor compounds may beneficially regulate hepatic metabolism. Disposal of sulfide through the sulfide oxidation pathway (SOP) is critical for maintaining sulfide within a safe physiological range. We show that mice lacking the liver- enriched mitochondrial SOP enzyme thiosulfate sulfurtransferase (Tst-/- mice) exhibit high circulating sulfide, increased gluconeogenesis, hypertriglyceridemia, and fatty liver. Unexpectedly, hepatic sulfide levels are normal in Tst-/- mice because of exaggerated induction of sulfide disposal, with associated suppression of global protein persulfidation and nuclear respiratory factor 2 target protein levels. Hepatic proteomic and persulfidomic profiles converge on gluconeogenesis and lipid metabolism, revealing a selective deficit in medium-chain fatty acid oxidation in Tst-/- mice. We reveal a critical role of TST in hepatic metabolism that has implications for sulfide donor strategies in the context of metabolic disease.


A Catalytic Trisulfide in Human Sulfide Quinone Oxidoreductase Catalyzes Coenzyme A Persulfide Synthesis and Inhibits Butyrate Oxidation.

  • Aaron P Landry‎ et al.
  • Cell chemical biology‎
  • 2019‎

Mitochondrial sulfide quinone oxidoreductase (SQR) catalyzes the oxidation of H2S to glutathione persulfide with concomitant reduction of CoQ10. We report herein that the promiscuous activity of human SQR supported the conversion of CoA to CoA-SSH (CoA-persulfide), a potent inhibitor of butyryl-CoA dehydrogenase, and revealed a molecular link between sulfide and butyrate metabolism, which are known to interact. Three different CoQ1-bound crystal structures furnished insights into how diverse substrates access human SQR, and provided snapshots of the reaction coordinate. Unexpectedly, the active site cysteines in SQR are configured in a bridging trisulfide at the start and end of the catalytic cycle, and the presence of sulfane sulfur was confirmed biochemically. Importantly, our study leads to a mechanistic proposal for human SQR in which sulfide addition to the trisulfide cofactor eliminates 201Cys-SSH, forming an intense charge-transfer complex with flavin adenine dinucleotide, and 379Cys-SSH, which transfers sulfur to an external acceptor.


GSMN-ML- a genome scale metabolic network reconstruction of the obligate human pathogen Mycobacterium leprae.

  • Khushboo Borah‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

Leprosy, caused by Mycobacterium leprae, has plagued humanity for thousands of years and continues to cause morbidity, disability and stigmatization in two to three million people today. Although effective treatment is available, the disease incidence has remained approximately constant for decades so new approaches, such as vaccine or new drugs, are urgently needed for control. Research is however hampered by the pathogen's obligate intracellular lifestyle and the fact that it has never been grown in vitro. Consequently, despite the availability of its complete genome sequence, fundamental questions regarding the biology of the pathogen, such as its metabolism, remain largely unexplored. In order to explore the metabolism of the leprosy bacillus with a long-term aim of developing a medium to grow the pathogen in vitro, we reconstructed an in silico genome scale metabolic model of the bacillus, GSMN-ML. The model was used to explore the growth and biomass production capabilities of the pathogen with a range of nutrient sources, such as amino acids, glucose, glycerol and metabolic intermediates. We also used the model to analyze RNA-seq data from M. leprae grown in mouse foot pads, and performed Differential Producibility Analysis to identify metabolic pathways that appear to be active during intracellular growth of the pathogen, which included pathways for central carbon metabolism, co-factor, lipids, amino acids, nucleotides and cell wall synthesis. The GSMN-ML model is thereby a useful in silico tool that can be used to explore the metabolism of the leprosy bacillus, analyze functional genomic experimental data, generate predictions of nutrients required for growth of the bacillus in vitro and identify novel drug targets.


Hydrogen sulfide stimulates lipid biogenesis from glutamine that is dependent on the mitochondrial NAD(P)H pool.

  • Sebastian Carballal‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Mammalian cells synthesize H2S from sulfur-containing amino acids and are also exposed to exogenous sources of this signaling molecule, notably from gut microbes. As an inhibitor of complex IV in the electron transport chain, H2S can have a profound impact on metabolism, suggesting the hypothesis that metabolic reprogramming is a primary mechanism by which H2S signals. In this study, we report that H2S increases lipogenesis in many cell types, using carbon derived from glutamine rather than from glucose. H2S-stimulated lipid synthesis is sensitive to the mitochondrial NAD(P)H pools and is enabled by reductive carboxylation of α-ketoglutarate. Lipidomics analysis revealed that H2S elicits time-dependent changes across several lipid classes, e.g., upregulating triglycerides while downregulating phosphatidylcholine. Direct analysis of triglyceride concentration revealed that H2S induces a net increase in the size of this lipid pool. These results provide a mechanistic framework for understanding the effects of H2S on increasing lipid droplets in adipocytes and population studies that have pointed to a positive correlation between cysteine (a substrate for H2S synthesis) and fat mass.


The mitochondrial NADH pool is involved in hydrogen sulfide signaling and stimulation of aerobic glycolysis.

  • Victor Vitvitsky‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Hydrogen sulfide is synthesized by enzymes involved in sulfur metabolism and oxidized via a dedicated mitochondrial pathway that intersects with the electron transport chain at the level of complex III. Studies with H2S are challenging since it is volatile and also reacts with oxidized thiols in the culture medium, forming sulfane sulfur species. The half-life of exogenously added H2S to cultured cells is unknown. In this study, we first examined the half-life of exogenously added H2S to human colonic epithelial cells. In plate cultures, H2S disappeared with a t1/2 of 3 to 4 min at 37 °C with a small fraction being trapped as sulfane sulfur species. In suspension cultures, the rate of abiotic loss of H2S was slower, and we demonstrated that sulfide stimulated aerobic glycolysis, which was sensitive to the mitochondrial but not the cytoplasmic NADH pool. Oxidation of mitochondrial NADH using the genetically encoded mito-LbNOX tool blunted the cellular sensitivity to sulfide-stimulated aerobic glycolysis and enhanced its oxidation to thiosulfate. In contrast, sulfide did not affect flux through the oxidative pentose phosphate pathway or the TCA cycle. Knockdown of sulfide quinone oxidoreductase, which commits H2S to oxidation, sensitized cells to sulfide-stimulated aerobic glycolysis. Finally, we observed that sulfide decreased ATP levels in cells. The dual potential of H2S to activate oxidative phosphorylation at low concentrations, but inhibit it at high concentrations, suggests that it might play a role in tuning electron flux and, therefore, cellular energy metabolism, particularly during cell proliferation.


BRD4-mediated epigenetic regulation of endoplasmic reticulum-mitochondria contact sites is governed by the mitochondrial complex III.

  • Brandon Chen‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Inter-organellar communication is critical for cellular metabolic homeostasis. One of the most abundant inter-organellar interactions are those at the endoplasmic reticulum and mitochondria contact sites (ERMCS). However, a detailed understanding of the mechanisms governing ERMCS regulation and their roles in cellular metabolism are limited by a lack of tools that permit temporal induction and reversal. Through unbiased screening approaches, we identified fedratinib, an FDA-approved drug, that dramatically increases ERMCS abundance by inhibiting the epigenetic modifier BRD4. Fedratinib rapidly and reversibly modulates mitochondrial and ER morphology and alters metabolic homeostasis. Moreover, ERMCS modulation depends on mitochondria electron transport chain complex III function. Comparison of fedratinib activity to other reported inducers of ERMCS revealed common mechanisms of induction and function, providing clarity and union to a growing body of experimental observations. In total, our results uncovered a novel epigenetic signaling pathway and an endogenous metabolic regulator that connects ERMCS and cellular metabolism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: