Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Defining early human NK cell developmental stages in primary and secondary lymphoid tissues.

  • Diana N Eissens‎ et al.
  • PloS one‎
  • 2012‎

A better understanding of human NK cell development in vivo is crucial to exploit NK cells for immunotherapy. Here, we identified seven distinctive NK cell developmental stages in bone marrow of single donors using 10-color flow cytometry and found that NK cell development is accompanied by early expression of stimulatory co-receptor CD244 in vivo. Further analysis of cord blood (CB), peripheral blood (PB), inguinal lymph node (inLN), liver lymph node (liLN) and spleen (SPL) samples showed diverse distributions of the NK cell developmental stages. In addition, distinctive expression profiles of early development marker CD33 and C-type lectin receptor NKG2A between the tissues, suggest that differential NK cell differentiation may take place at different anatomical locations. Differential expression of NKG2A and stimulatory receptors (e.g. NCR, NKG2D) within the different subsets of committed NK cells demonstrated the heterogeneity of the CD56(bright)CD16⁺/⁻ and CD56(dim)CD16⁺ subsets within the different compartments and suggests that microenvironment may play a role in differential in situ development of the NK cell receptor repertoire of committed NK cells. Overall, differential in situ NK cell development and trafficking towards multiple tissues may give rise to a broad spectrum of mature NK cell subsets found within the human body.


Peritoneal NK cells are responsive to IL-15 and percentages are correlated with outcome in advanced ovarian cancer patients.

  • Janneke S Hoogstad-van Evert‎ et al.
  • Oncotarget‎
  • 2018‎

The demonstration that ovarian carcinoma (OC) is an immunogenic disease, opens opportunities to explore immunotherapeutic interventions to improve clinical outcome. In this regard, NK cell based immunotherapy could be promising as it has been demonstrated that OC cells are susceptible to killing by cytokine-stimulated NK cells. Here, we evaluated whether percentage, phenotype, function and IL-15 responsiveness of ascites-derived natural killer (NK) cells is related to progression-free survival (PFS) and overall survival (OS) of advanced stage OC patients. Generally, a lower percentage of NK cells within the lymphocyte fraction was seen in OC ascites (mean 17.4 ± 2.7%) versus benign peritoneal fluids (48.1 ± 6.8%; p < 0.0001). Importantly, a higher CD56+ NK cell percentage in ascites was associated with a better PFS (p = 0.01) and OS (p = 0.002) in OC patients. Furthermore, the functionality of ascites-derived NK cells in terms of CD107a/IFN-γ activity was comparable to that of healthy donor peripheral blood NK cells, and stimulation with monomeric IL-15 or IL-15 superagonist ALT-803 potently improved their reactivity towards tumor cells. By showing that a higher NK cell percentage is related to better outcome in OC patients and NK cell functionality can be boosted by IL-15 receptor stimulation, a part of NK cell immunity in OC is further deciphered to exploit NK cell based immunotherapy.


Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells.

  • Florian Wimmers‎ et al.
  • Nature communications‎
  • 2018‎

Type I interferon (IFN) is a key driver of immunity to infections and cancer. Plasmacytoid dendritic cells (pDCs) are uniquely equipped to produce large quantities of type I IFN but the mechanisms that control this process are poorly understood. Here we report on a droplet-based microfluidic platform to investigate type I IFN production in human pDCs at the single-cell level. We show that type I IFN but not TNFα production is limited to a small subpopulation of individually stimulated pDCs and controlled by stochastic gene regulation. Combining single-cell cytokine analysis with single-cell RNA-seq profiling reveals no evidence for a pre-existing subset of type I IFN-producing pDCs. By modulating the droplet microenvironment, we demonstrate that vigorous pDC population responses are driven by a type I IFN amplification loop. Our study highlights the significance of stochastic gene regulation and suggests strategies to dissect the characteristics of immune responses at the single-cell level.


A polymorphism in the splice donor site of ZNF419 results in the novel renal cell carcinoma-associated minor histocompatibility antigen ZAPHIR.

  • Kelly Broen‎ et al.
  • PloS one‎
  • 2011‎

Nonmyeloablative allogeneic stem cell transplantation (SCT) can induce remission in patients with renal cell carcinoma (RCC), but this graft-versus-tumor (GVT) effect is often accompanied by graft-versus-host disease (GVHD). Here, we evaluated minor histocompatibility antigen (MiHA)-specific T cell responses in two patients with metastatic RCC who were treated with reduced-intensity conditioning SCT followed by donor lymphocyte infusion (DLI). One patient had stable disease and emergence of SMCY.A2-specific CD8+ T cells was observed after DLI with the potential of targeting SMCY-expressing RCC tumor cells. The second patient experienced partial regression of lung metastases from whom we isolated a MiHA-specific CTL clone with the capability of targeting RCC cell lines. Whole genome association scanning revealed that this CTL recognizes a novel HLA-B7-restricted MiHA, designated ZAPHIR, resulting from a polymorphism in the splice donor site of the ZNF419 gene. Tetramer analysis showed that emergence of ZAPHIR-specific CD8+ T cells in peripheral blood occurred in the absence of GVHD. Furthermore, the expression of ZAPHIR in solid tumor cell lines indicates the involvement of ZAPHIR-specific CD8+ T cell responses in selective GVT immunity. These findings illustrate that the ZNF419-encoded MiHA ZAPHIR is an attractive target for specific immunotherapy after allogeneic SCT.


High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy.

  • Jan Spanholtz‎ et al.
  • PloS one‎
  • 2010‎

Immunotherapy based on natural killer (NK) cell infusions is a potential adjuvant treatment for many cancers. Such therapeutic application in humans requires large numbers of functional NK cells that have been selected and expanded using clinical grade protocols. We established an extremely efficient cytokine-based culture system for ex vivo expansion of NK cells from hematopoietic stem and progenitor cells from umbilical cord blood (UCB). Systematic refinement of this two-step system using a novel clinical grade medium resulted in a therapeutically applicable cell culture protocol. CD56(+)CD3(-) NK cell products could be routinely generated from freshly selected CD34(+) UCB cells with a mean expansion of >15,000 fold and a nearly 100% purity. Moreover, our protocol has the capacity to produce more than 3-log NK cell expansion from frozen CD34(+) UCB cells. These ex vivo-generated cell products contain NK cell subsets differentially expressing NKG2A and killer immunoglobulin-like receptors. Furthermore, UCB-derived CD56(+) NK cells generated by our protocol uniformly express high levels of activating NKG2D and natural cytotoxicity receptors. Functional analysis showed that these ex vivo-generated NK cells efficiently target myeloid leukemia and melanoma tumor cell lines, and mediate cytolysis of primary leukemia cells at low NK-target ratios. Our culture system exemplifies a major breakthrough in producing pure NK cell products from limited numbers of CD34(+) cells for cancer immunotherapy.


Clonal evolution in myelodysplastic syndromes.

  • Pedro da Silva-Coelho‎ et al.
  • Nature communications‎
  • 2017‎

Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide (follow-up 2.5-11 years). Whole-exome and targeted deep sequencing at multiple time points during the disease course reveals that both linear and branched evolutionary patterns occur with and without disease-modifying treatment. The application of disease-modifying therapy may create an evolutionary bottleneck after which more complex MDS, but also unrelated clones of haematopoietic cells, may emerge. In addition, subclones that acquired an additional mutation associated with treatment resistance (TP53) or disease progression (NRAS, KRAS) may be detected months before clinical changes become apparent. Monitoring the genetic landscape during the disease may help to guide treatment decisions.


Fibrinolytic assays in bleeding of unknown cause: Improvement in diagnostic yield.

  • Lars L F G Valke‎ et al.
  • Research and practice in thrombosis and haemostasis‎
  • 2022‎

Analysis of fibrinolytic disorders is challenging and may potentially lead to underdiagnosis of patients with an increased bleeding tendency.


TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer.

  • Ralph Ja Maas‎ et al.
  • Oncoimmunology‎
  • 2020‎

Advanced ovarian cancer (OC) patients have a poor 5-year survival of only 28%, emphasizing the medical need for improved therapies. Adjuvant immunotherapy could be an attractive approach since OC is an immunogenic disease and the presence of tumor-infiltrating lymphocytes has shown to positively correlate with patient survival. Among these infiltrating lymphocytes are natural killer (NK) cells, key players involved in tumor targeting, initiated by signaling via activating and inhibitory receptors. Here, we investigated the role of the DNAM-1/TIGIT/CD96 axis in the anti-tumor response of NK cells toward OC. Ascites-derived NK cells from advanced OC patients showed lower expression of activating receptor DNAM-1 compared to healthy donor peripheral blood NK cells, while inhibitory receptor TIGIT and CD96 expression was equal or higher, respectively. This shift to a more inhibitory phenotype could also be induced in vitro by co-culturing healthy donor NK cells with OC tumor spheroids, and in vivo on intraperitoneally infused NK cells in SKOV-3 OC bearing NOD/SCID-IL2Rγnull (NSG) mice. Interestingly, TIGIT blockade enhanced degranulation and interferon gamma (IFNγ) production of healthy donor CD56dim NK cells in response to OC tumor cells, especially when DNAM-1/CD155 interactions were in place. Importantly, TIGIT blockade boosted functional responsiveness of CD56dim NK cells of OC patients with a baseline reactivity against SKOV-3 cells. Overall, our data show for the first time that checkpoint molecules TIGIT/DNAM-1/CD96 play an important role in NK cell responsiveness against OC, and provides rationale for incorporating TIGIT interference in NK cell-based immunotherapy in OC patients.


Anakinra: efficacy in the management of fever during neutropenia and mucositis in autologous stem cell transplantation (AFFECT-2)-study protocol for a multicenter randomized double-blind placebo-controlled trial.

  • Charlotte E M de Mooij‎ et al.
  • Trials‎
  • 2020‎

Since decades, fever and infections have been the most important complications of intensive chemotherapy and hematopoietic stem cell transplantation (HSCT) in the treatment of hematologic malignancies. Neutropenia has long been considered to be the most important risk factor for these complications. However, recent studies have shown that not neutropenia, but the development of mucositis is the most important cause of these complications. Currently, limited options for the prevention and treatment of mucositis are available, of which most are only supportive. The pro-inflammatory cytokine interleukin-1 (IL-1) plays a crucial role in the pathogenesis of mucositis. Pre-clinical studies of chemotherapy-induced mucositis have shown that recombinant human IL-1 receptor antagonist anakinra significantly ameliorated intestinal mucositis. In our pilot study AFFECT-1, we examined the safety and maximal tolerated dose of anakinra in patients with multiple myeloma, treated with high-dose melphalan (HDM) and autologous HSCT, selecting a dose of 300 mg daily for the phase IIb trial. The aim of the AFFECT-2 study is to determine the efficacy of anakinra in preventing fever during neutropenia (FN) and mucositis in this study population.


Human CD34+-derived complete plasmacytoid and conventional dendritic cell vaccine effectively induces antigen-specific CD8+ T cell and NK cell responses in vitro and in vivo.

  • Jesper van Eck van der Sluijs‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2023‎

Allogeneic stem cell transplantation (alloSCT) can be curative for hemato-oncology patients due to effective graft-versus-tumor immunity. However, relapse remains the major cause of treatment failure, emphasizing the need for adjuvant immunotherapies. In this regard, post-transplantation dendritic cell (DC) vaccination is a highly interesting strategy to boost graft-versus-tumor responses. Previously, we developed a clinically applicable protocol for simultaneous large-scale generation of end-stage blood DC subsets from donor-derived CD34+ stem cells, including conventional type 1 and 2 DCs (cDC1s and cDC2s), and plasmacytoid DCs (pDCs). In addition, the total cultured end-product (DC-complete vaccine), also contains non-end-stage-DCs (i.e. non-DCs). In this study, we aimed to dissect the phenotypic identity of these non-DCs and their potential immune modulatory functions on the potency of cDCs and pDCs in stimulating tumor-reactive CD8+ T and NK cell responses, in order to obtain rationale for clinical translation of our DC-complete vaccine. The non-DC compartment was heterogeneous and comprised of myeloid progenitors and (immature) granulocyte- and monocyte-like cells. Importantly, non-DCs potentiated toll-like receptor-induced DC maturation, as reflected by increased expression of co-stimulatory molecules and enhanced cDC-derived IL-12 and pDC-derived IFN-α production. Additionally, antigen-specific CD8+ T cells effectively expanded upon DC-complete vaccination in vitro and in vivo. This effect was strongly augmented by non-DCs in an antigen-independent manner. Moreover, non-DCs did not impair in vitro DC-mediated NK cell activation, degranulation nor cytotoxicity. Notably, in vivo i.p. DC-complete vaccination activated i.v. injected NK cells. Together, these data demonstrate that the non-DC compartment potentiates DC-mediated activation and expansion of antigen-specific CD8+ T cells and do not impair NK cell responses in vitro and in vivo. This underscores the rationale for further clinical translation of our CD34+-derived DC-complete vaccine in hemato-oncology patients post alloSCT.


Generation of human ILC3 from allogeneic and autologous CD34+ hematopoietic progenitors toward adoptive transfer.

  • Jolien M R Van der Meer‎ et al.
  • Cytotherapy‎
  • 2024‎

Type 3 innate lymphoid cells (ILC3) are important in tissue homeostasis. In the gut, ILC3 repair damaged epithelium and suppress inflammation. In allogeneic hematopoietic cell transplantation (HCT), ILC3 protect against graft-versus-host disease (GvHD), most likely by restoring tissue damage and preventing inflammation. We hypothesize that supplementing HCT grafts with interleukin-22 (IL-22)-producing ILC3 may prevent acute GvHD. We therefore explored ex vivo generation of human IL-22-producing ILC3 from hematopoietic stem and progenitor cells (HSPC) obtained from adult, neonatal and fetal sources. We established a stroma-free system culturing human cord blood-derived CD34+ HSPC with successive cytokine mixes for 5 weeks. We analyzed the presence of phenotypically defined ILC, their viability, proliferation and IL-22 production (after stimulation) by flow cytometry and enzyme-linked immunosorbent assay (ELISA). We found that the addition of recombinant human IL-15 and the enhancer of zeste homolog 1/2 inhibitor UNC1999 promoted ILC3 generation. Similar results were demonstrated when UNC1999 was added to CD34+ HSPC derived from healthy adult granulocyte colony-stimulating factor mobilized peripheral blood and bone marrow, but not fetal liver. UNC1999 did not negatively impact IL-22 production in any of the HSPC sources. Finally, we observed that autologous HSPC mobilized from the blood of adults with hematological malignancies also developed into ILC3, albeit with a significantly lower capacity. Together, we developed a stroma-free protocol to generate large quantities of IL-22-producing ILC3 from healthy adult human HSPC that can be applied for adoptive transfer to prevent GvHD after allogeneic HCT.


Engineering of CD34+ progenitor-derived natural killer cells with higher-affinity CD16a for enhanced antibody-dependent cellular cytotoxicity.

  • Paulien M M van Hauten‎ et al.
  • Cytotherapy‎
  • 2024‎

Natural killer (NK) cell transfer is a promising cellular immunotherapy for cancer. Previously, we developed a robust method to generate large NK cell numbers from CD34+ hematopoietic stem and progenitor cells (HSPCs), which exhibit strong anti-tumor activity. However, since these cells express low levels of the Fc receptor CD16a in vitro, antibody-dependent cellular cytotoxicity (ADCC) by these cells is limited. To broaden clinical applicability of our HSPC-NK cells toward less NK-sensitive malignancies, we aimed to improve ADCC through CD16a transduction.


siRNA silencing of PD-1 ligands on dendritic cell vaccines boosts the expansion of minor histocompatibility antigen-specific CD8(+) T cells in NOD/SCID/IL2Rg(null) mice.

  • Anniek B van der Waart‎ et al.
  • Cancer immunology, immunotherapy : CII‎
  • 2015‎

Allogeneic stem cell transplantation (allo-SCT) can be a curative therapy for patients suffering from hematological malignancies. The therapeutic efficacy is based on donor-derived CD8(+) T cells that recognize minor histocompatibility antigens (MiHAs) expressed by patient's tumor cells. However, these responses are not always sufficient, and persistence and recurrence of the malignant disease are often observed. Therefore, application of additive therapy targeting hematopoietic-restricted MiHAs is essential. Adoptive transfer of MiHA-specific CD8(+) T cells in combination with dendritic cell (DC) vaccination could be a promising strategy. Though effects of DC vaccination in anti-cancer therapy have been demonstrated, improvement in DC vaccination therapy is needed, as clinical responses are limited. In this study, we investigated the potency of program death ligand (PD-L) 1 and 2 silenced DC vaccines for ex vivo priming and in vivo boosting of MiHA-specific CD8(+) T cell responses. Co-culturing CD8(+) T cells with MiHA-loaded DCs resulted in priming and expansion of functional MiHA-specific CD8(+) T cells from the naive repertoire, which was augmented upon silencing of PD-L1 and PD-L2. Furthermore, DC vaccination supported and expanded adoptively transferred antigen-specific CD8(+) T cells in vivo. Importantly, the use of PD-L silenced DCs improved boosting and further expansion of ex vivo primed MiHA-specific CD8(+) T cells in immunodeficient mice. In conclusion, adoptive transfer of ex vivo primed MiHA-specific CD8(+) T cells in combination with PD-L silenced DC vaccination, targeting MiHAs restricted to the hematopoietic system, is an interesting approach to boost GVT immunity in allo-SCT patients and thereby prevent relapse.


Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process.

  • Jan Spanholtz‎ et al.
  • PloS one‎
  • 2011‎

Natural killer (NK) cell-based adoptive immunotherapy is a promising treatment approach for many cancers. However, development of protocols that provide large numbers of functional NK cells produced under GMP conditions are required to facilitate clinical studies. In this study, we translated our cytokine-based culture protocol for ex vivo expansion of NK cells from umbilical cord blood (UCB) hematopoietic stem cells into a fully closed, large-scale, cell culture bioprocess. We optimized enrichment of CD34(+) cells from cryopreserved UCB units using the CliniMACS system followed by efficient expansion for 14 days in gas-permeable cell culture bags. Thereafter, expanded CD34(+) UCB cells could be reproducibly amplified and differentiated into CD56(+)CD3(-) NK cell products using bioreactors with a mean expansion of more than 2,000 fold and a purity of >90%. Moreover, expansion in the bioreactor yielded a clinically relevant dose of NK cells (mean: 2×10(9) NK cells), which display high expression of activating NK receptors and cytolytic activity against K562. Finally, we established a versatile closed washing procedure resulting in optimal reduction of medium, serum and cytokines used in the cell culture process without changes in phenotype and cytotoxic activity. These results demonstrate that large numbers of UCB stem cell-derived NK cell products for adoptive immunotherapy can be produced in closed, large-scale bioreactors for the use in clinical trials.


Decreased levels of circulating IL17-producing CD161+CCR6+ T cells are associated with graft-versus-host disease after allogeneic stem cell transplantation.

  • Anniek B van der Waart‎ et al.
  • PloS one‎
  • 2012‎

The C-type lectin-like receptor CD161 is a well-established marker for human IL17-producing T cells, which have been implicated to contribute to the development of graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (allo-SCT). In this study, we analyzed CD161(+) T cell recovery, their functional properties and association with GVHD occurrence in allo-SCT recipients. While CD161(+)CD4(+) T cells steadily recovered, CD161(hi)CD8(+) T cell numbers declined during tapering of Cyclosporine A (CsA), which can be explained by their initial growth advantage over CD161(neg/low)CD8(+) T cells due to ABCB1-mediated CsA efflux. Interestingly, occurrence of acute and chronic GVHD was significantly correlated with decreased levels of circulating CD161(+)CD4(+) as well as CD161(hi)CD8(+) T cells. In addition, these subsets from transplanted patients secreted high levels of IFNγ and IL17. Moreover, we found that CCR6 co-expression by CD161(+) T cells mediated specific migration towards CCL20, which was expressed in GVHD biopsies. Finally, we demonstrated that CCR6(+) T cells indeed were present in these CCL20(+) GVHD-affected tissues. In conclusion, we showed that functional CD161(+)CCR6(+) co-expressing T cells disappear from the circulation and home to GVHD-affected tissue sites. These findings support the hypothesis that CCR6(+)CD161-expressing T cells may be involved in the immune pathology of GVHD following their CCL20-dependent recruitment into affected tissues.


Benchmarking of survival outcomes following haematopoietic stem cell transplantation: A review of existing processes and the introduction of an international system from the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE).

  • John A Snowden‎ et al.
  • Bone marrow transplantation‎
  • 2020‎

In many healthcare settings, benchmarking for complex procedures has become a mandatory requirement by competent authorities, regulators, payers and patients to assure clinical performance, cost-effectiveness and safe care of patients. In several countries inside and outside Europe, benchmarking systems have been established for haematopoietic stem cell transplantation (HSCT), but access is not universal. As benchmarking is now integrated into the FACT-JACIE standards, the EBMT and JACIE established a Clinical Outcomes Group (COG) to develop and introduce a universal system accessible across EBMT members. Established systems from seven European countries (United Kingdom, Italy, Belgium, France, Germany, Spain, Switzerland), USA and Australia were appraised, revealing similarities in process, but wide variations in selection criteria and statistical methods. In tandem, the COG developed the first phase of a bespoke risk-adapted international benchmarking model for one-year survival following allogeneic and autologous HSCT based on current capabilities within the EBMT registry core dataset. Data completeness, which has a critical impact on validity of centre comparisons, is also assessed. Ongoing development will include further scientific validation of the model, incorporation of further variables (when appropriate) alongside implementation of systems for clinically meaningful interpretation and governance aiming to maximise acceptance to centres, clinicians, payers and patients across EBMT.


Intraperitoneal infusion of ex vivo-cultured allogeneic NK cells in recurrent ovarian carcinoma patients (a phase I study).

  • Janneke Hoogstad-van Evert‎ et al.
  • Medicine‎
  • 2019‎

Recurrent ovarian carcinoma has dismal prognosis, but control of disease and prolonged survival are possible in some patients. The estimated 5-year survival is 46% for all stages of ovarian cancer, and only 28% for metastasized disease. Notably, the majority of women with ovarian cancer are diagnosed with stage III or IV disease with a high recurrence rate. As most women with relapsed or metastatic cancer will die of progressive disease, there is an urgent need for novel therapeutic strategies. The primary aim of our study is to evaluate safety and toxicity of intraperitoneal infusion of ex vivo-expanded natural killer cells (NK), generated from CD34+ umbilical cord blood (UCB) progenitor cells, with and without a preceding non-myeloablative immunosuppressive conditioning regimen in patients suffering from recurrent ovarian cancer. The secondary objectives are to compare the in vivo lifespan, expansion, and biological activity of intraperitoneally infused NK cell products with or without preparative chemotherapy, as well as evaluate effects on disease load.


Response and Adherence to Nilotinib in Daily practice (RAND study): an in-depth observational study of chronic myeloid leukemia patients treated with nilotinib.

  • Christel C L M Boons‎ et al.
  • European journal of clinical pharmacology‎
  • 2020‎

This comprehensive observational study aimed to gain insight into adherence to nilotinib and the effect of (non)adherence on exposure (Cmin) and treatment outcomes.


The magnitude of cytokine production by stimulated CD56+ cells is associated with early stages of systemic sclerosis.

  • Marta Cossu‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2016‎

Immune activation is a hallmark of systemic sclerosis (SSc). However, the immunological alterations that occur in preclinical and non-fibrotic SSc and that differentiate these subjects from those with primary Raynaud's phenomenon (PRP) or healthy controls (HC) are poorly defined. We isolated CD56+ (NK/NKT-like) cells from HC, patients with PRP, early SSc (EaSSc) and definite SSc without skin or lung fibrosis. Cytokine production upon different activating stimuli was measured via a multiplex immuno assay. Clearly discriminative patterns among the different stages of SSc were most markedly observed after TLR1/2 stimulation, with increased IL-6, TNF-α and MIP-1α/CCL3 production in definite SSc patients as compared to HC and/or PRP. Initial alterations were observed in EaSSc patients with an intermediate secretion pattern between HC/PRP and definite SSc. CD56+ cells from patients at different stages of SSc differentially respond to TLR stimulation, highlighting the relevance of natural immunity in the developmental and pre-fibrotic SSc.


Combining factor VIII levels and thrombin/plasmin generation: A population pharmacokinetic-pharmacodynamic model for patients with haemophilia A.

  • Laura H Bukkems‎ et al.
  • British journal of clinical pharmacology‎
  • 2022‎

Prophylactic treatment of haemophilia A patients with factor VIII (FVIII) concentrate focuses on maintaining a minimal trough FVIII activity level to prevent bleeding. However, due to differences in bleeding tendency, the pharmacokinetic (PK)-guided dosing approach may be suboptimal. An alternative approach could be the addition of haemostatic pharmacodynamic (PD) parameters, reflecting a patient's unique haemostatic balance. Our aim was to develop a population PK/PD model, based on FVIII activity levels and Nijmegen Haemostasis Assay (NHA) patterns, a global haemostatic assay that measures thrombin/plasmin generation simultaneously.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: