Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

HDAC1 and HDAC6 are essential for driving growth in IDH1 mutant glioma.

  • Matthew C Garrett‎ et al.
  • Scientific reports‎
  • 2023‎

Low-grade and secondary high-grade gliomas frequently contain mutations in the IDH1 or IDH2 metabolic enzymes that are hypothesized to drive tumorigenesis by inhibiting many of the chromatin-regulating enzymes that regulate DNA structure. Histone deacetylase inhibitors are promising anti-cancer agents and have already been used in clinical trials. However, a clear understanding of their mechanism or gene targets is lacking. In this study, the authors genetically dissect patient-derived IDH1 mutant cultures to determine which HDAC enzymes drive growth in IDH1 mutant gliomas. A panel of patient-derived gliomasphere cell lines (2 IDH1 mutant lines, 3 IDH1 wildtype lines) were subjected to a drug-screen of epigenetic modifying drugs from different epigenetic classes. The effect of LBH (panobinostat) on gene expression and chromatin structure was tested on patient-derived IDH1 mutant lines. The role of each of the highly expressed HDAC enzymes was molecularly dissected using lentiviral RNA interference knock-down vectors and a patient-derived IDH1 mutant in vitro model of glioblastoma (HK252). These results were then confirmed in an in vivo xenotransplant model (BT-142). The IDH1 mutation leads to gene down-regulation, DNA hypermethylation, increased DNA accessibility and H3K27 hypo-acetylation in two distinct IDH1 mutant over-expression models. The drug screen identified histone deacetylase inhibitors (HDACi) and panobinostat (LBH) more specifically as the most selective compounds to inhibit growth in IDH1 mutant glioma lines. Of the eleven annotated HDAC enzymes (HDAC1-11) only six are expressed in IDH1 mutant glioma tissue samples and patient-derived gliomasphere lines (HDAC1-4, HDAC6, and HDAC9). Lentiviral knock-down experiments revealed that HDAC1 and HDAC6 are the most consistently essential for growth both in vitro and in vivo and target very different gene modules. Knock-down of HDAC1 or HDAC6 in vivo led to a more circumscribed less invasive tumor. The gene dysregulation induced by the IDH1 mutation is wide-spread and only partially reversible by direct IDH1 inhibition. This study identifies HDAC1 and HDAC6 as important and drug-targetable enzymes that are necessary for growth and invasiveness in IDH1 mutant gliomas.


Decorin expression is associated with predictive diffusion MR phenotypes of anti-VEGF efficacy in glioblastoma.

  • Kunal S Patel‎ et al.
  • Scientific reports‎
  • 2020‎

Previous data suggest that apparent diffusion coefficient (ADC) imaging phenotypes predict survival response to anti-VEGF monotherapy in glioblastoma. However, the mechanism by which imaging may predict clinical response is unknown. We hypothesize that decorin (DCN), a proteoglycan implicated in the modulation of the extracellular microenvironment and sequestration of pro-angiogenic signaling, may connect ADC phenotypes to survival benefit to anti-VEGF therapy. Patients undergoing resection for glioblastoma as well as patients included in The Cancer Genome Atlas (TCGA) and IVY Glioblastoma Atlas Project (IVY GAP) databases had pre-operative imaging analyzed to calculate pre-operative ADCL values, the average ADC in the lower distribution using a double Gaussian mixed model. ADCL values were correlated to available RNA expression from these databases as well as from RNA sequencing from patient derived mouse orthotopic xenograft samples. Targeted biopsies were selected based on ADC values and prospectively collected during resection. Surgical specimens were used to evaluate for DCN RNA and protein expression by ADC value. The IVY Glioblastoma Atlas Project Database was used to evaluate DCN localization and relationship with VEGF pathway via in situ hybridization maps and RNA sequencing data. In a cohort of 35 patients with pre-operative ADC imaging and surgical specimens, DCN RNA expression levels were significantly larger in high ADCL tumors (41.6 vs. 1.5; P = 0.0081). In a cohort of 17 patients with prospectively targeted biopsies there was a positive linear correlation between ADCL levels and DCN protein expression between tumors (Pearson R2 = 0.3977; P = 0.0066) and when evaluating different targets within the same tumor (Pearson R2 = 0.3068; P = 0.0139). In situ hybridization data localized DCN expression to areas of microvascular proliferation and immunohistochemical studies localized DCN protein expression to the tunica adventitia of blood vessels within the tumor. DCN expression positively correlated with VEGFR1 & 2 expression and localized to similar areas of tumor. Increased ADCL on diffusion MR imaging is associated with high DCN expression as well as increased survival with anti-VEGF therapy in glioblastoma. DCN may play an important role linking the imaging features on diffusion MR and anti-VEGF treatment efficacy. DCN may serve as a target for further investigation and modulation of anti-angiogenic therapy in GBM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: