Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

RNA G-quadruplex folding is a multi-pathway process driven by conformational entropy.

  • Marijana Ugrina‎ et al.
  • Nucleic acids research‎
  • 2024‎

The kinetics of folding is crucial for the function of many regulatory RNAs including RNA G-quadruplexes (rG4s). Here, we characterize the folding pathways of a G-quadruplex from the telomeric repeat-containing RNA by combining all-atom molecular dynamics and coarse-grained simulations with circular dichroism experiments. The quadruplex fold is stabilized by cations and thus, the ion atmosphere forming a double layer surrounding the highly charged quadruplex guides the folding process. To capture the ionic double layer in implicit solvent coarse-grained simulations correctly, we develop a matching procedure based on all-atom simulations in explicit water. The procedure yields quantitative agreement between simulations and experiments as judged by the populations of folded and unfolded states at different salt concentrations and temperatures. Subsequently, we show that coarse-grained simulations with a resolution of three interaction sites per nucleotide are well suited to resolve the folding pathways and their intermediate states. The results reveal that the folding progresses from unpaired chain via hairpin, triplex and double-hairpin constellations to the final folded structure. The two- and three-strand intermediates are stabilized by transient Hoogsteen interactions. Each pathway passes through two on-pathway intermediates. We hypothesize that conformational entropy is a hallmark of rG4 folding. Conformational entropy leads to the observed branched multi-pathway folding process for TERRA25. We corroborate this hypothesis by presenting the free energy landscapes and folding pathways of four rG4 systems with varying loop length.


Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy.

  • Anna Wacker‎ et al.
  • Nucleic acids research‎
  • 2011‎

The mfl-riboswitch regulates expression of ribonucleotide reductase subunit in Mesoplasma florum by binding to 2'-deoxyguanosine and thereby promoting transcription termination. We characterized the structure of the ligand-bound aptamer domain by NMR spectroscopy and compared the mfl-aptamer to the aptamer domain of the closely related purine-sensing riboswitches. We show that the mfl-aptamer accommodates the extra 2'-deoxyribose unit of the ligand by forming a more relaxed binding pocket than these found in the purine-sensing riboswitches. Tertiary structures of the xpt-aptamer bound to guanine and of the mfl-aptamer bound to 2'-deoxyguanosine exhibit very similar features, although the sequence of the mfl-aptamer contains several alterations compared to the purine-aptamer consensus sequence. These alterations include the truncation of a hairpin loop which is crucial for complex formation in all purine-sensing riboswitches characterized to date. We further defined structural features and ligand binding requirements of the free mfl-aptamer and found that the presence of Mg(2+) is not essential for complex formation, but facilitates ligand binding by promoting pre-organization of key structural motifs in the free aptamer.


NMR and MD studies of the temperature-dependent dynamics of RNA YNMG-tetraloops.

  • Jan Ferner‎ et al.
  • Nucleic acids research‎
  • 2008‎

In a combined NMR/MD study, the temperature-dependent changes in the conformation of two members of the RNA YNMG-tetraloop motif (cUUCGg and uCACGg) have been investigated at temperatures of 298, 317 and 325 K. The two members have considerable different thermal stability and biological functions. In order to address these differences, the combined NMR/MD study was performed. The large temperature range represents a challenge for both, NMR relaxation analysis (consistent choice of effective bond length and CSA parameter) and all-atom MD simulation with explicit solvent (necessity to rescale the temperature). A convincing agreement of experiment and theory is found. Employing a principle component analysis of the MD trajectories, the conformational distribution of both hairpins at various temperatures is investigated. The ground state conformation and dynamics of the two tetraloops are indeed found to be very similar. Furthermore, both systems are initially destabilized by a loss of the stacking interactions between the first and the third nucleobase in the loop region. While the global fold is still preserved, this initiation of unfolding is already observed at 317 K for the uCACGg hairpin but at a significantly higher temperature for the cUUCGg hairpin.


Mechanistic insights into temperature-dependent regulation of the simple cyanobacterial hsp17 RNA thermometer at base-pair resolution.

  • Dominic Wagner‎ et al.
  • Nucleic acids research‎
  • 2015‎

The cyanobacterial hsp17 ribonucleicacid thermometer (RNAT) is one of the smallest naturally occurring RNAT. It forms a single hairpin with an internal 1×3-bulge separating the start codon in stem I from the ribosome binding site (RBS) in stem II. We investigated the temperature-dependent regulation of hsp17 by mapping individual base-pair stabilities from solvent exchange nuclear magnetic resonance (NMR) spectroscopy. The wild-type RNAT was found to be stabilized by two critical CG base pairs (C14-G27 and C13-G28). Replacing the internal 1×3 bulge by a stable CG base pair in hsp17(rep) significantly increased the global stability and unfolding cooperativity as evidenced by circular dichroism spectroscopy. From the NMR analysis, remote stabilization and non-nearest neighbour effects exist at the base-pair level, in particular for nucleotide G28 (five nucleotides apart from the side of mutation). Individual base-pair stabilities are coupled to the stability of the entire thermometer within both the natural and the stabilized RNATs by enthalpy-entropy compensation presumably mediated by the hydration shell. At the melting point the Gibbs energies of the individual nucleobases are equalized suggesting a consecutive zipper-type unfolding mechanism of the RBS leading to a dimmer-like function of hsp17 and switch-like regulation behaviour of hsp17(rep). The data show how minor changes in the nucleotide sequence not only offset the melting temperature but also alter the mode of temperature sensing. The cyanobacterial thermosensor demonstrates the remarkable adjustment of natural RNATs to execute precise temperature control.


Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution.

  • Jörg Rinnenthal‎ et al.
  • Nucleic acids research‎
  • 2010‎

In prokaryotes, RNA thermometers regulate a number of heat shock and virulence genes. These temperature sensitive RNA elements are usually located in the 5'-untranslated regions of the regulated genes. They repress translation initiation by base pairing to the Shine-Dalgarno sequence at low temperatures. We investigated the thermodynamic stability of the temperature labile hairpin 2 of the Salmonella fourU RNA thermometer over a broad temperature range and determined free energy, enthalpy and entropy values for the base-pair opening of individual nucleobases by measuring the temperature dependence of the imino proton exchange rates via NMR spectroscopy. Exchange rates were analyzed for the wild-type (wt) RNA and the A8C mutant. The wt RNA was found to be stabilized by the extraordinarily stable G14-C25 base pair. The mismatch base pair in the wt RNA thermometer (A8-G31) is responsible for the smaller cooperativity of the unfolding transition in the wt RNA. Enthalpy and entropy values for the base-pair opening events exhibit linear correlation for both RNAs. The slopes of these correlations coincide with the melting points of the RNAs determined by CD spectroscopy. RNA unfolding occurs at a temperature where all nucleobases have equal thermodynamic stabilities. Our results are in agreement with a consecutive zipper-type unfolding mechanism in which the stacking interaction is responsible for the observed cooperativity. Furthermore, remote effects of the A8C mutation affecting the stability of nucleobase G14 could be identified. According to our analysis we deduce that this effect is most probably transduced via the hydration shell of the RNA.


Modulation of the stability of the Salmonella fourU-type RNA thermometer.

  • Jörg Rinnenthal‎ et al.
  • Nucleic acids research‎
  • 2011‎

RNA thermometers are translational control elements that regulate the expression of bacterial heat shock and virulence genes. They fold into complex secondary structures that block translation at low temperatures. A temperature increase releases the ribosome binding site and thus permits translation initiation. In fourU-type RNA thermometers, the AGGA sequence of the SD region is paired with four consecutive uridines. We investigated the melting points of the wild-type and mutant sequences. It was decreased by 5°C when a stabilizing GC basepair was exchanged by an AU pair or increased by 11°C when an internal AG mismatch was converted to a GC pair, respectively. Stabilized or destabilized RNA structures are directly correlated with decreased or increased in vivo gene expression, respectively. Mg(2+) also affected the melting point of the fourU thermometer. Variations of the Mg(2+) concentration in the physiological range between 1 and 2 mM translated into a 2.8°C shift of the melting point. Thus, Mg(2+) binding to the hairpin RNA is regulatory relevant. Applying three different NMR techniques, two Mg(2+) binding sites were found in the hairpin structure. One of these binding sites could be identified as outer sphere binding site that is located within the fourU motif. Binding of the two Mg(2+) ions exhibits a positive cooperativity with a Hill coefficient of 1.47. Free energy values ΔG for Mg(2+) binding determined by NMR are in agreement with data determined from CD measurements.


The cotranscriptional folding landscape for two cyclic di-nucleotide-sensing riboswitches with highly homologous aptamer domains acting either as ON- or OFF-switches.

  • Tom Landgraf‎ et al.
  • Nucleic acids research‎
  • 2022‎

Riboswitches are gene regulatory elements located in untranslated mRNA regions. They bind inducer molecules with high affinity and specificity. Cyclic-di-nucleotide-sensing riboswitches are major regulators of genes for the environment, membranes and motility (GEMM) of bacteria. Up to now, structural probing assays or crystal structures have provided insight into the interaction between cyclic-di-nucleotides and their corresponding riboswitches. ITC analysis, NMR analysis and computational modeling allowed us to gain a detailed understanding of the gene regulation mechanisms for the Cd1 (Clostridium difficile) and for the pilM (Geobacter metallireducens) riboswitches and their respective di-nucleotides c-di-GMP and c-GAMP. Binding capability showed a 25 nucleotide (nt) long window for pilM and a 61 nt window for Cd1. Within this window, binding affinities ranged from 35 μM to 0.25 μM spanning two orders of magnitude for Cd1 and pilM showing a strong dependence on competing riboswitch folds. Experimental results were incorporated into a Markov simulation to further our understanding of the transcriptional folding pathways of riboswitches. Our model showed the ability to predict riboswitch gene regulation and its dependence on transcription speed, pausing and ligand concentration.


NMR structure of the Vibrio vulnificus ribosomal protein S1 domains D3 and D4 provides insights into molecular recognition of single-stranded RNAs.

  • Nusrat Shahin Qureshi‎ et al.
  • Nucleic acids research‎
  • 2021‎

The ribosomal S1 protein (rS1) is indispensable for translation initiation in Gram-negative bacteria. rS1 is a multidomain protein that acts as an RNA chaperone and ensures that mRNAs can bind the ribosome in a single-stranded conformation, which could be related to fast recognition. Although many ribosome structures were solved in recent years, a high-resolution structure of a two-domain mRNA-binding competent rS1 construct is not yet available. Here, we present the NMR solution structure of the minimal mRNA-binding fragment of Vibrio Vulnificus rS1 containing the domains D3 and D4. Both domains are homologues and adapt an oligonucleotide-binding fold (OB fold) motif. NMR titration experiments reveal that recognition of miscellaneous mRNAs occurs via a continuous interaction surface to one side of these structurally linked domains. Using a novel paramagnetic relaxation enhancement (PRE) approach and exploring different spin-labeling positions within RNA, we were able to track the location and determine the orientation of the RNA in the rS1-D34 bound form. Our investigations show that paramagnetically labeled RNAs, spiked into unmodified RNA, can be used as a molecular ruler to provide structural information on protein-RNA complexes. The dynamic interaction occurs on a defined binding groove spanning both domains with identical β2-β3-β5 interfaces. Evidently, the 3'-ends of the cis-acting RNAs are positioned in the direction of the N-terminus of the rS1 protein, thus towards the 30S binding site and adopt a conformation required for translation initiation.


Conformational switch in the ribosomal protein S1 guides unfolding of structured RNAs for translation initiation.

  • Nusrat Shahin Qureshi‎ et al.
  • Nucleic acids research‎
  • 2018‎

Initiation of bacterial translation requires that the ribosome-binding site in mRNAs adopts single-stranded conformations. In Gram-negative bacteria the ribosomal protein S1 (rS1) is a key player in resolving of structured elements in mRNAs. However, the exact mechanism of how rS1 unfolds persistent secondary structures in the translation initiation region (TIR) is still unknown. Here, we show by NMR spectroscopy that Vibrio vulnificus rS1 displays a unique architecture of its mRNA-binding domains, where domains D3 and D4 provide the mRNA-binding platform and cover the nucleotide binding length of the full-length rS1. D5 significantly increases rS1's chaperone activity, although it displays structural heterogeneity both in isolation and in presence of the other domains, albeit to varying degrees. The heterogeneity is induced by the switch between the two equilibrium conformations and is triggered by an order-to-order transition of two mutually exclusive secondary structures (β-strand-to-α-helix) of the 'AERERI' sequence. The conformational switching is exploited for melting of structured 5'-UTR's, as the conformational heterogeneity of D5 can compensate the entropic penalty of complex formation. Our data thus provides a detailed understanding of the intricate coupling of protein and RNA folding dynamics enabling translation initiation of structured mRNAs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: