Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Systematic identification of regulatory proteins critical for T-cell activation.

  • Peter Chu‎ et al.
  • Journal of biology‎
  • 2003‎

The activation of T cells, mediated by the T-cell receptor (TCR), activates a battery of specific membrane-associated, cytosolic and nuclear proteins. Identifying the signaling proteins downstream of TCR activation will help us to understand the regulation of immune responses and will contribute to developing therapeutic agents that target immune regulation.


MBOVPG45_0375 Encodes an IgG-Binding Protein and MBOVPG45_0376 Encodes an IgG-Cleaving Protein in Mycoplasma bovis.

  • Haoran Zhao‎ et al.
  • Frontiers in veterinary science‎
  • 2021‎

Mycoplasma bovis is a significant bacterial pathogen which is able to persist in cattle and cause chronic diseases. This phenomenon may relate to M. bovis evading the immune system of the host. Immunoglobulin-binding proteins are widely distributed in a variety of pathogenic bacteria, including some Mycoplasma species. These proteins are considered to help the bacteria evade the immune response of the host. Here we found M. bovis strain PG45 can bind to IgG from several animals. MBOVPG45_0375 encodes a putative membrane protein, has strong amino acid sequence similarity with Immunoglobulin G-binding protein in Mycoplasma mycoides subsp. capri. Hence, we constructed recombinant MBOVPG45_0375 (r0375) in the Escherichia coli expression system and demonstrated that r0375 can bind to IgG non-immunologically rather than specific binding similar to interaction of antigen and antibody. Moreover, r0375 can bind to the Fab fragment of IgG. Also, the binding of r0375 and IgG inhibits the formation of antigen-antibody union. Furthermore, MBOVPG45_0376 encodes an IgG-cleaving protein of M. bovis strain PG45. Nevertheless, r0375 binding to IgG is required for the cleavage activity of recombinant 0376 (r0376). The activity of r0376 is also affected by incubation time and temperature. In addition, we found both MBOVPG45_0375 and MBOVPG45_0376 are membrane proteins of M. bovis strain PG45. These results about MBOVPG45_0375 as an IgG-binding protein and MBOVPG45_0376 as an IgG-cleaving protein offer a new insight into the interaction between M. bovis and its host.


GNL3 Regulates SIRT1 Transcription and Promotes Hepatocellular Carcinoma Stem Cell-Like Features and Metastasis.

  • Songyan Zhang‎ et al.
  • Journal of oncology‎
  • 2022‎

The expression of GNL3 in hepatocellular carcinoma was detected, and its effect on the proliferation and metastasis of hepatocellular carcinoma cells was investigated. Hepatocellular carcinoma and adjacent tissues were collected. The mRNA and protein expression levels of GNL3 were detected by qRT-PCR, Western blot, and immunohistochemistry. The relationship between GNL3 and the prognosis of liver cancer was analysed using public databases. A GNL3 interfering plasmid was constructed, and the effects of GNL3 on the proliferation of HepG2 and PLC-PRF-5 hepatoma cells were detected by the CCK-8 method. Transwell chamber assays were used to detect the effects of GNL3 on the migration and invasion of hepatocellular carcinoma cells. The effects of GNL3 on SIRT1 expression and stem cell markers were analysed. The effect of GNL3 on the proliferation of hepatocellular carcinoma was detected in a subcutaneous tumor-bearing animal model. The results showed that the mRNA and protein levels of GNL3 were higher than those of adjacent tissues. The overall survival (OS) of HCC patients with high GNL3 expression was worse. In vivo and in vitro experiments confirmed that silencing GNL3 could inhibit the proliferation, migration, and invasion of hepatocellular carcinoma cells. Mechanistic studies have shown that GNL3 regulates SIRT1 expression. GNL3 mediates the stem cell-like properties of HCC cells through SIRT1. In conclusion, this study found that GNL3 increased expression in hepatocellular carcinoma, which promoted the malignant biological behavior of hepatocellular carcinoma cells and was related to the cell dry phenotype. This study has certain significance in evaluating the prognosis of HCC patients.


Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration.

  • Yuanxiong Cao‎ et al.
  • Nature communications‎
  • 2022‎

Transplantation of mesenchymal stem cells (MSCs) holds promise to repair severe traumatic injuries. However, current transplantation practices limit the potential of this technique, either by losing the viable MSCs or reducing the performance of resident MSCs. Herein, we design a "bead-jet" printer, specialized for high-throughput intra-operative formulation and printing of MSCs-laden Matrigel beads. We show that high-density encapsulation of MSCs in Matrigel beads is able to augment MSC function, increasing MSC proliferation, migration, and extracellular vesicle production, compared with low-density bead or high-density bulk encapsulation of the equivalent number of MSCs. We find that the high-density MSCs-laden beads in sparse patterns demonstrate significantly improved therapeutic performance, by regenerating skeletal muscles approaching native-like cell density with reduced fibrosis, and regenerating skin with hair follicle growth and increased dermis thickness. MSC proliferation within 1-week post-transplantation and differentiation at 3 - 4 weeks post-transplantation are suggested to contribute therapy augmentation. We expect this "bead-jet" printing system to strengthen the potential of MSC transplantation.


4-((5-(Tert-butyl)-3-chloro-2-hydroxybenzyl) amino)-2-hydroxybenzoic acid protects against oxygen-glucose deprivation/reperfusion injury.

  • Yuexinzi Jin‎ et al.
  • Life sciences‎
  • 2018‎

Oxidative stress is one of the most important pathological mechanisms which could aggravate ischemic stroke injury. In order to seek for better treatment therapies to alleviate stroke injury, novel chemicals have been synthetized. In the present study, a new compound 4-((5-(tert-butyl)-3-chloro-2-hydroxybenzyl) amino)-2- hydroxybenzoic acid, named LX009, was used to determine whether it could reduce the oxidative stress caused by oxygen-glucose deprivation (OGD)/reperfusion (RP) and exert neuroprotective effect both in mouse Neuro 2A (N2A) neuroblastoma cells and mouse primary cortical neurons.


Induction of Robust and Specific Humoral and Cellular Immune Responses by Bovine Viral Diarrhea Virus Virus-Like Particles (BVDV-VLPs) Engineered with Baculovirus Expression Vector System.

  • Zhanhui Wang‎ et al.
  • Vaccines‎
  • 2021‎

Bovine viral diarrhea virus (BVDV) is an important animal pathogen that affects cattle. Infections caused by the virus have resulted in substantial economic losses and outbreaks of BVDV are reported globally. Virus-like particles (VLPs) are promising vaccine technology largely due to their safety and strong ability to elicit robust immune responses. In this study, we developed a strategy to generate BVDV-VLPs using a baculovirus expression vector system (BEVS). We were able to assemble BVDV-VLPs composed of dimerized viral proteins E2 and Erns, and the VLPs were spherical particles with the diameters of about 50 nm. Mice immunized with 15 μg of VLPs adjuvanted with ISA201 elicited higher levels of E2-specific IgG, IgG1, and IgG2a antibodies as well as higher BVDV-neutralizing activity in comparison with controls. Re-stimulation of the splenocytes collected from mice immunized with VLPs led to significantly increased levels of CD3+CD4+T cells and CD3+CD8+T cells. In addition, the splenocytes showed dramatically enhanced proliferation and the secretion of Th1-associated IFN-γ and Th2-associated IL-4 compared to that of the unstimulated control group. Taken together, our data indicate that BVDV-VLPs efficiently induced BVDV-specific humoral and cellular immune responses in mice, showing a promising potential of developing BVDV-VLP-based vaccines for the prevention of BVDV infections.


Electrostatic potential difference between tumor and paratumor regulates cancer stem cell behavior and prognose tumor spread.

  • Haoran Zhao‎ et al.
  • Bioengineering & translational medicine‎
  • 2023‎

Tumor spread is responsible for most deaths related to cancer. Increasing the accuracy of cancer prognosis is critical to reducing the high mortality rates in cancer patients. Here, we report that the electrostatic potential difference (EPD) between tumor and its paratumor tissue is a prognostic marker for tumor spread. This finding is concluded from the patient-specific EPD values and clinical observation. The electrostatic potential values were measured on tissue cryosections from 51 patients using Kelvin probe force microscopy (KPFM). A total of ~44% (15/34) patients of Vtumor-paratumor > 0 were featured with tumor spread, whereas only ~18% (2/11) patients of Vtumor-paratumor < 0 had tumor spread. Next, we found the increased enrichment of cancer stem cells in paratumors with lower electrostatic potentials using immunofluorescence imaging, which suggested the attribution of tumor spread to the galvanotaxis of cancer stem cells (CSCs) toward lower potential. The findings were finally validated in breast and lung spheroid models composed of differentiated cancer cells and cancer stem cells at the ratio of 1:1 and embedded in Matrigel dopped with negative-, neutral- and positive-charged polymers and CSCs prefer to spread out of spheroids to lower electrostatic potential sites. This work may inspire the development of diagnostic and prognostic strategies targeting at tissue EPDs and CSCs for tumor therapy.


Exploring the association between triglyceride-glucose index and thyroid function.

  • Hui Cheng‎ et al.
  • European journal of medical research‎
  • 2023‎

Thyroid dysfunction is associated with abnormal glucose-insulin homeostasis, and the triglyceride-glucose (TyG) index has been recommended as a convenient surrogate of insulin resistance (IR). This study aimed to investigate the relationship between TyG and thyroid function in the US population.


BTF3 promotes proliferation and glycolysis in hepatocellular carcinoma by regulating GLUT1.

  • Peng Wang‎ et al.
  • Cancer biology & therapy‎
  • 2023‎

Hepatocellular carcinoma (HCC) is a grievous tumor with an increasing incidence worldwide. Basic transcription factor 3 (BTF3) is discovered to regulate the expression of glucose transporter 1 (GLUT1), which benefits glycolysis, a momentous signature of tumors, through transactivation of the forkhead box M1 (FOXM1) expression. BTF3 is highly expressed in HCC. However, whether BTF3 promotes GLUT1 expression through FOXM1 to modulate glycolysis in HCC remains unclear. The expression profile of BTF3 were determined by online database, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. The role and mechanism of BTF3 in the proliferation and glycolysis of HCC cells were examined by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation, XF96 Extracellular Flux analyzer, spectrophotometry and western blot analysis. In addition, the direct interaction between BTF3 and FOXM1 was verified by dual-luciferase reporter and co-immunoprecipitation assays. Moreover, the role of BTF3 was also explored in a xenografted mice model. The expression of BTF3 was increased in HCC cells and tumor tissues. Knockdown of BTF3 reduced the cell viability, Edu positive cells, extracellular acidification rate (ECAR), glucose consumption and lactate production in both Huh7 and HCCLM3 cells. The expressions of FOXM1 and GLUT1 were increased in HCC tissues, which were positively correlated with the BTF3 expression. Moreover, a direct interaction existed between BTF3 and FOXM1 in HCC cells. Downregulation of BTF3 decreased the relative protein levels of FOXM1 and GLUT1, which were rescued with overexpression of FOXM1 in both cells. More importantly, overexpression of FOXM1 restored the cell viability, ECAR, glucose consumption and lactate production in both Huh7 and HCCLM3 cells transfected with siBTF3#1. Furthermore, inhibition of BTF3 decreased tumor weight and volume, and the relative level of BTF3, FOXM1, GLUT1 and Ki-67 in tumor tissues from mice xenografted with Huh7 cells. BTF3 enhanced the cell proliferation and glycolysis through FOXM1/GLUT1 axis in HCC.


Integrated Analysis of the Roles of RNA Binding Proteins and Their Prognostic Value in Clear Cell Renal Cell Carcinoma.

  • Bowen Wang‎ et al.
  • Journal of healthcare engineering‎
  • 2021‎

We downloaded the RNA sequencing data of ccRCC from the Cancer Genome Atlas (TCGA) database and identified differently expressed RBPs in different tissues. In this study, we used bioinformatics to analyze the expression and prognostic value of RBPs; then, we performed functional analysis and constructed a protein interaction network for them. We also screened out some RBPs related to the prognosis of ccRCC. Finally, based on the identified RBPs, we constructed a prognostic model that can predict patients' risk of illness and survival time. Also, the data in the HPA database were used for verification.


Multiplex gene quantification as digital markers for extremely rapid evaluation of chemo-drug sensitivity.

  • Jiaqi Fan‎ et al.
  • Patterns (New York, N.Y.)‎
  • 2021‎

Current administrations for precision drug uses are limited in evaluation speed. Here, we propose the use of multiplex gene-based digital markers for the extremely rapid personalized prediction of individual sensitivity to cancer drugs. We first screen the transcriptional profiles by applying two to three gene filters and scoring genes by their impact on drug sensitivity and finalize the gene lists by K-nearest neighbors cross-validation. The digital markers are cancer type dependent, are composed of tens to hundreds of gene expressions, and are rapidly quantified by reverse transcription quantitative real-time PCR (qRT-PCR) within 1-3 h after tumor sampling. The area under the receiver operating characteristic curve reached 0.88 when testing the performance of digital markers on organoids derived from colorectal cancer patient tumors. The algorithm and corresponding graphic user interface were developed to demonstrate the promise of digital markers for extremely rapid drug recommendation.


An Automated Organoid Platform with Inter-organoid Homogeneity and Inter-patient Heterogeneity.

  • Shengwei Jiang‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Current organoid technologies require intensive manual manipulation and lack uniformity in organoid size and cell composition. We present here an automated organoid platform that generates uniform organoid precursors in high-throughput. This is achieved by templating from monodisperse Matrigel droplets and sequentially delivering them into wells using a synchronized microfluidic droplet printer. Each droplet encapsulates a certain number of cells (e.g., 1,500 cells), which statistically represent the heterogeneous cell population in a tumor section. The system produces >400-μm organoids within 1 week with both inter-organoid homogeneity and inter-patient heterogeneity. This enables automated organoid printing to obtain one organoid per well. The organoids recapitulate 97% gene mutations in the parental tumor and reflect the patient-to-patient variation in drug response and sensitivity, from which we obtained more than 80% accuracy among the 21 patients investigated. This organoid platform is anticipated to fulfill the personalized medicine goal of 1-week high-throughput screening for cancer patients.


CNS Organoid Surpasses Cell-Laden Microgel Assembly to Promote Spinal Cord Injury Repair.

  • Zitian Wang‎ et al.
  • Research (Washington, D.C.)‎
  • 2022‎

The choice of therapeutic agents remains an unsolved issue in the repair of spinal cord injury. In this work, various agents and configurations were investigated and compared for their performance in promoting nerve regeneration, including bead assembly and bulk gel of collagen and Matrigel, under acellular and cell-laden conditions, and cerebral organoid (CO) as the in vitro preorganized agent. First, in Matrigel-based agents and the CO transplantations, the recipient animal gained more axon regeneration and the higher Basso, Beattie, and Bresnahan (BBB) scoring than the grafted collagen gels. Second, new nerves more uniformly infiltrated into the transplants in bead form assembly than the molded chunks. Third, the materials loaded the neural progenitor cells (NPCs) or the CO implantation groups received more regenerated nerve fibers than their acellular counterparts, suggesting the necessity to transplant exogenous cells for large trauma (e.g., a 5 mm long spinal cord transect). In addition, the activated microglial cells might benefit from neural regeneration after receiving CO transplantation in the recipient animals. The organoid augmentation may suggest that in vitro maturation of a microtissue complex is necessary before transplantation and proposes organoids as the premium therapeutic agents for nerve regeneration.


Analysis on EZH2: mechanism identification of related CeRNA and its immunoassay in hepatocellular carcinoma.

  • Haoran Zhao‎ et al.
  • BMC medical genomics‎
  • 2023‎

To screen the possible potential signaling pathways related to enhancer of zeste homolog 2 (EZH2) based on ceRNA mechanism, and to analyze the correlation between E2H2 and depths of various immune cell infiltration depths. The relationship between different immune checkpoints were also analyzed.


Establishment of a Suspension MDBK Cell Line in Serum-Free Medium for Production of Bovine Alphaherpesvirus-1.

  • Pengpeng Wang‎ et al.
  • Vaccines‎
  • 2021‎

The Madin-Darby bovine kidney (MDBK) cell line is currently used for the production of bovine alphaherpesvirus-1 (BoHV-1) vaccine. For the purpose of vaccine manufacturing, suspension cells are preferred over adherent ones due to simplified sub-cultivation and an easier scale-up process, both of which could significantly reduce production cost. This study aimed to establish a procedure for the culture of BoHV-1 in the suspended MDBK cell line in serum-free medium. We screened several commercially available serum-free media and chose ST503 for subsequent experiments. We successfully adapted the adherent MDBK cells to suspended growth in ST503 in the absence of serum. The maximum density of suspension-adapted MDBK cells could reach 2.5 × 107 cells/mL in ST503 medium with optimal conditions. The average size of suspension-adapted cells increased to 18 ± 1 µm from 16 ± 1 µm. Moreover, we examined tumorigenicity of the suspended cells and found no sign of tumorigenicity post adaptation. Next, we developed a protocol for the culture of BoHV-1 in the cell line described above and found that ultrasonic treatment could facilitate virus release and enhance virus yield by 11-fold, with the virus titer reaching 8.0 ± 0.2 log10TCID50/mL. Most importantly, the prototype inactivated BoHV-1 vaccine we generated using the suspension cultures of MDBK cells induced neutralizing antibodies to a titer comparable to that of the commercial inactivated BoHV-1 vaccine. Overall, we established and optimized a protocol for the production of inactivated BoHV-1 vaccine in MDBK cells adapted for suspension culture, which provides insights for future large-scale manufacturing of BoHV-1 vaccine.


The Function and Prognostic Value of RNA-Binding Proteins in Colorectal Adenocarcinoma Were Analyzed Based on Bioinformatics of Smart Medical Big Data.

  • Haoran Zhao‎ et al.
  • Journal of healthcare engineering‎
  • 2021‎

Colon cancer is the third most frequent cancer in the world and is mainly adenocarcinoma in terms of pathological type. It has been confirmed that the dysregulation of RNA-binding proteins (RBPs) significantly participates in the occurrence and development of numerous malignant tumors. Therefore, we analyzed the RBPs associated with colon adenocarcinoma (COAD) to assess their possible biological effects and prognostic value. A total of 398 COAD tissue datasets and 39 normal tissue datasets were retrieved from the TCGA data resource and screened out the RBPs, which are differentially expressed between tumor tissues and nontumor tissues. Then, bioinformatics analyses based on smart medical big data were conducted on these RBPs. Overall, 181 differentially expressed RBPs were uncovered, consisting of 121 upregulated RBPs and 60 downregulated RBPs. Finally, we selected 7 prognostic-related RBPs with research prospects and constructed a prognostic model according to the median risk score. There were remarkable differences in OS between the high-risk and low-risk groups. In addition, the performance of the prognostic model was evaluated and verified with other COAD patient data in the TCGA database. The results showed that the area under the ROC curve (AUC) for the train group was 0.744 and the one for the test group was 0.661, confirming that the model assesses patients' prognosis to some extent. And based on 7 hub RBPs, we constructed a nomogram as a reference for evaluating the survival rate of COAD patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: