Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

PDIA3 correlates with clinical malignant features and immune signature in human gliomas.

  • Hao Zhang‎ et al.
  • Aging‎
  • 2020‎

Since therapeutic strategies are limited in gliomas, new molecules or biomarkers are essential for diagnosis and therapy. Here, we investigated expression of protein disulfide isomerase family A member 3 (PDIA3) in gliomas to evaluate its potential as a promising immune target or biomarker. Transcriptome level, genomic profiles and its association with clinical practice from TCGA and CGGA databases were analyzed. All statistical analyses were performed using R project. In gliomas with high PDIA3 expression, somatic mutations showed the correlation with loss of PTEN and amplification of EGFR; meanwhile, in PDIA3 low gliomas, mutations in isocitrate dehydrogenase (IDH) took 80%. Moreover, PDIA3 was found to positively correlate with ESTIMATE scores and diverse infiltrating immune and stromal cell types localizing in tumor microenvironment. PDIA3 was found to be highly correlated with macrophage and T cells based on single cell sequencing. Additionally, PDIA3 was also involved in suppression of anti-tumor immunity via multiple immune regulatory processes. Finally, PDIA3 was observed to correlate with other immune checkpoint inhibitors and associated with inflammation. Our findings identified the significance of PDIA3 in the process of gliomas and demonstrated the potential of PDIA3 as a molecular target in prognosis and immune related treatment of gliomas.


Serum KIAA1199 is an advanced-stage prognostic biomarker and metastatic oncogene in cholangiocarcinoma.

  • Xiangyu Zhai‎ et al.
  • Aging‎
  • 2020‎

Cell proliferation and migration are the determinants of malignant tumor progression, and a better understanding of related genes will lead to the identification of new targets aimed at preventing the spread of cancer. Some studies have shown that KIAA1199 (CEMIP) is a transmembrane protein expressed in many types of noncancerous cells and cancer cells. However, the potential role of KIAA1199 in the progression of cholangiocarcinoma (CCA) remains unclear.


Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function.

  • Junying Wang‎ et al.
  • Aging‎
  • 2020‎

Polyamines have been shown to delay cellular and organismal aging and to provide cardiovascular protection in humans. Because age-related cardiovascular dysfunction is often accompanied by impaired mitochondrial biogenesis and function, we explored the ability of spermidine (SPD), a major mammalian polyamine, to attenuate cardiac aging through activation of mitochondrial biogenesis. Cardiac polyamine levels were reduced in aged (24-month-old) rats. Six-week SPD supplementation restored cardiac polyamine content, preserved myocardial ultrastructure, and inhibited mitochondrial dysfunction. Immunoblotting showed that ornithine decarboxylase (ODC) and SPD/spermine N1-acetyltransferase (SSAT) were downregulated and upregulated, respectively, in the myocardium of older rats. These changes were paralleled by age-dependent downregulation of components of the sirtuin-1/peroxisome proliferator-activated receptor gamma coactivator alpha (SIRT1/PGC-1α) signaling pathway, an important regulator of mitochondrial biogenesis. SPD administration increased SIRT1, PGC-1α, nuclear respiratory factors 1 and 2 (NRF1, NRF2), and mitochondrial transcription factor A (TFAM) expression; decreased ROS production; and improved OXPHOS performance in senescent (H2O2-treated) cardiomyocytes. Inhibition of polyamine biosynthesis or SIRT1 activity abolished these effects. PGC-1α knockdown experiments confirmed that SPD activated mitochondrial biogenesis through SIRT1-mediated deacetylation of PGC-1α. These data provide new insight into the antiaging effects of SPD, and suggest potential applicability to protect against deterioration of cardiac function with aging.


PGK1 inhibitor CBR-470-1 protects neuronal cells from MPP+.

  • Jinyu Zheng‎ et al.
  • Aging‎
  • 2020‎

The neurotoxin MPP+ (1-methyl-4-phenylpyridinium ion) disrupts mitochondrial function leading to oxidative stress and neuronal death. Here we examine whether activation of the Keap1-Nrf2 cascade can protect SH-SY5Y neuroblastoma cells from MPP+-induced cytotoxicity. Treatment of SH-SY5Y cells with CBR-470-1, an inhibitor of the glycolytic enzyme phosphoglycerate kinase 1 (PGK1), leads to methylglyoxal modification of Keap1, Keap1-Nrf2 disassociation, and increased expression of Nrf2 responsive genes. Pretreatment with CBR-470-1 potently attenuated MPP+-induced oxidative injury and SH-SY5Y cell apoptosis. CBR-470-1 neuroprotection is dependent upon Nrf2, as Nrf2 shRNA or CRISPR/Cas9-mediated Nrf2 knockout, abolished CBR-470-1-induced SH-SY5Y cytoprotection against MPP+. Consistent with these findings, PGK1 depletion or knockout mimicked CBR-470-1-induced actions and rendered SH-SY5Y cells resistant to MPP+-induced cytotoxicity. Furthermore, activation of the Nrf2 cascade by CRISPR/Cas9-induced Keap1 knockout protected SH-SY5Y cells from MPP+. In Keap1 or PGK1 knockout SH-SY5Y cells,CBR-470-1 failed to offer further cytoprotection against MPP+. Collectively PGK1 inhibition by CBR-470-1 protects SH-SY5Y cells from MPP+ via activation of the Keap1-Nrf2 cascade.


C5aR deficiency attenuates the breast cancer development via the p38/p21 axis.

  • Jian Chen‎ et al.
  • Aging‎
  • 2020‎

Emerging evidence has shown activation of the complement component C5 to C5a in cancer tissues and C5aR expression in breast cancer cells relates to the tumor development and poor prognosis, suggesting the involvement of complement C5a/C5aR pathway in the breast cancer pathogenesis. In this study, we found that as compared to the non-tumoral tissues, both C5aR and MAPK/p38 showed an elevated expression, but p21/p-p21 showed lower expression, in the tumoral tissues of breast cancer patients. Mice deficient in C5aR or mice treated with the C5aR antagonist exhibited attenuation of breast cancer growth and reduction in the p38/p-p38 expression, but increase in p21/p-p21 expression, in the tumor tissues. Pre-treatment of the breast cancer cells with recombinant C5a resulted in reduced p21 expression, and MAPK/p38 inhibitors prevented C5a-induced reduction in p21 expression, suggesting the involvement of the MAPK/p38 signaling pathway in the C5a/C5aR-mediated suppression of p21/p-p21 expression. These results provide evidence that breast cancer development may rely on C5a/C5aR interaction, for which MAPK/p38 pathway participate in down-regulating the p21 expression. Inhibition of C5a/C5aR pathway is expected to be helpful for the treatment of patients with breast cancer.


MicroRNA-143 sensitizes acute myeloid leukemia cells to cytarabine via targeting ATG7- and ATG2B-dependent autophagy.

  • Hao Zhang‎ et al.
  • Aging‎
  • 2020‎

Targeting autophagy holds promise to enhance chemosensitivity in acute myeloid leukemia (AML). MicroRNA-143 (miR-143) has been found to suppress autophagy, however, it is not clear whether miR-143 augments cytarabine cytotoxicity in AML. Here, we report that cytarabine treatment reduces miR-143 expression in AML cell lines and primary AML cells. Moreover, ectopic expression of miR-143 further decreases cell viability in cytarabine-treated AML cells. By contrast, miR-143 knockdown inhibits cytarabine-induced cytotoxicity, together indicating a role of miR-143 in enhancing cytarabine sensitivity in AML. Subsequently, we show that miR-143 inhibits autophagy in cytarabine-treated AML cells by directly targeting autophagy-related proteins (ATG), ATG7 and ATG2B, two critical known components of autophagic machinery. More importantly, autophagy reconstructed via co-expression of ATG7 and ATG2B substantially attenuates miR-143-enhanced cytotoxicity, which is associated with suppression of caspase-dependent apoptotic pathway. Overall, this study demonstrates that targeting ATG7 and ATG2B-dependent autophagy is a critical mechanism by which miR-143 sensitizes AML to cytarabine, implicating it as a potential therapeutic target in AML treatment.


Curcumin (CUMINUP60®) mitigates exercise fatigue through regulating PI3K/Akt/AMPK/mTOR pathway in mice.

  • Minghui Hu‎ et al.
  • Aging‎
  • 2023‎

Curcumin is a chemical constituent extracted from Curcuma longa L. Several clinical and preclinical studies have demonstrated that it can mitigate exercise fatigue, but the exact mechanism is still unknown. Therefore, we applied a mouse model of exercise fatigue to investigate the possible molecular mechanisms of curcumin's anti-fatigue effect. Depending on body mass, Kunming mice were randomly divided into control, caffeine (positive drug), and curcumin groups, and were given 28 days intragastric administration. Both the caffeine group and curcumin group showed significant improvement in exercise fatigue compared to the control group, as evidenced by the increase in time to exhaustion, as well as the higher quadriceps coefficient, muscle glycogen (MG) content, and increase in the expression of Akt, AMPK, PI3K, and mTOR proteins. While the curcumin group also significantly improved the exercise fatigue of the mice, demonstrating a lower AMP/ATP ratio and lactic acid (LA) content, and increased glycogen synthase (GS), and myonectin content compared to the caffeine group. Therefore, in the present study, we found that curcumin can exert a similar anti-fatigue effect to caffeine and may act by regulating energy metabolism through modulating the expression of the proteins in the PI3K/Akt/AMPK/mTOR pathway.


Tumor necrosis factor superfamily 14 is critical for the development of renal fibrosis.

  • You Li‎ et al.
  • Aging‎
  • 2020‎

Tumor necrosis factor superfamily protein 14 (TNFSF14) was recently identified as a risk factor in some fibrosis diseases. However, the role of TNFSF14 in renal fibrosis pathogenesis remains unknown.


Levodopa affects spike and local field synchronisation in the pedunculopontine nucleus of a rat model of Parkinson's disease.

  • Hao Zhang‎ et al.
  • Aging‎
  • 2021‎

The pedunculopontine nucleus (PPN) undergoes significant anatomic and electrophysiological alterations in Parkinson's disease (PD), severely impacting locomotion. However, the effect of 6-hydroxydopamine (6-OHDA) lesion and levodopa (L-DOPA) therapy on the relationships between spike activities and local field potential (LFP) within the PPN is not well-understood. Synchronisation between the spike activity of individual neurones and LFP of neuronal ensembles is a crucial problem in the pathogenesis of PD. In this study, LFP signals and spikes in the PPN of rats in control, lesioned, and L-DOPA groups were recorded synchronously with a multi-unit electrical signal acquisition system and analysed for their coherence value, spike-field coherence, and phase-lock relationship. The spike-LFP relationship in the PPN was markedly increased in specific frequency bands because of the 6-OHDA lesion but differed depending on the animal locomotion state and neuronal type. L-DOPA had a limited therapeutic effect on the 6-OHDA-induced increase in the coherence value. Our study demonstrates that the PPN spike-LFP relationship is involved in the pathogenesis of PD and is critical for the effects of L-DOPA, providing a basis for the clinical treatment of refractory PD symptoms.


Identification and validation of methylation-CpG prognostic signature for prognosis of hepatocellular carcinoma.

  • Chunmei He‎ et al.
  • Aging‎
  • 2024‎

Epigenetic biomarkers help predict the prognosis of cancer patients and evaluating the clinical outcome of immunization therapy. In this study, we present a personalized gene methylation-CpG signature to enhance the accuracy of survival prediction for individuals with hepatocellular carcinoma (HCC). Utilizing RNA sequencing and methylation datasets from GEO as well as TCGA, we conducted single sample GSEA (ssGSEA), WGCNA, as well as Cox regression. Through these analyses, we identified 175 oxidative stress and immune-related genes along with 4 CpG loci that are associated with the prognosis of HCC. Subsequently, we constructed a prognostic signature for HCC utilizing these 4 CpG sites, referred to as the HCC Prognostic Signature of Methylation-CpG sites (HPSM). Further investigation revealed an enrichment of immune-related signal pathways in the HPSM-low group, which demonstrated a positive correlation with better survival among HCC patients. Moreover, the methylation of the CpG sites in HPSM was found to be closely linked to drug sensitivity. In vitro experiments tentatively confirmed that promoter methylation regulated the expression of BMPER, one of the CpG sites within HPSM. The expression of BMPER was significantly correlated with cell death in the oxidative stress pathway, and overexpression of BMPER effectively inhibited HCC cell proliferation. Consequently, our findings suggest that HPSM is an independent predictive factor and holds promise for accurately predicting the prognosis of HCC patients.


Internal modulation of proteolysis in vascular extracellular matrix remodeling: role of ADAM metallopeptidase with thrombospondin type 1 motif 5 in the development of intracranial aneurysm rupture.

  • Weihan Wang‎ et al.
  • Aging‎
  • 2021‎

Intracranial aneurysms (IAs) are common cerebrovascular diseases that carry a high mortality rate, and the mechanisms that contribute to IA formation and rupture have not been elucidated. ADAMTS-5 (ADAM Metallopeptidase with Thrombospondin Type 1 Motif 5) is a secreted proteinase involved in matrix degradation and ECM (extracellular matrix) remodeling processes, and we hypothesized that the dysregulation of ADAMTS-5 could play a role in the pathophysiology of IA. Immunofluorescence revealed that the ADAMTS-5 levels were decreased in human and murine IA samples. The administration of recombinant protein ADAMTS-5 significantly reduced the incidence of aneurysm rupture in the experimental model of IA. IA artery tissue was collected and utilized for histology, immunostaining, and specific gene expression analysis. Additionally, the IA arteries in ADAMTS-5-administered mice showed reduced elastic fiber destruction, proteoglycan accumulation, macrophage infiltration, inflammatory response, and apoptosis. To further verify the role of ADAMTS-5 in cerebral vessels, a specific ADAMTS-5 inhibitor was used on another model animal, zebrafish, and intracranial hemorrhage was observed in zebrafish embryos. In conclusion, our findings indicate that ADAMTS-5 is downregulated in human IA, and compensatory ADAMTS-5 administration inhibits IA development and rupture with potentially important implications for treating this cerebrovascular disease.


PLK1 Inhibition alleviates transplant-associated obliterative bronchiolitis by suppressing myofibroblast differentiation.

  • Jizhang Yu‎ et al.
  • Aging‎
  • 2020‎

Chronic allograft dysfunction (CAD) resulting from fibrosis is the major limiting factor for long-term survival of lung transplant patients. Myofibroblasts promote fibrosis in multiple organs, including the lungs. In this study, we identified PLK1 as a promoter of myofibroblast differentiation and investigated the mechanism by which its inhibition alleviates transplant-associated obliterative bronchiolitis (OB) during CAD. High-throughput bioinformatic analyses and experiments using the murine heterotopic tracheal transplantation model revealed that PLK1 is upregulated in grafts undergoing CAD as compared with controls, and that inhibiting PLK1 alleviates OB in vivo. Inhibition of PLK1 in vitro reduced expression of the specific myofibroblast differentiation marker α-smooth muscle actin (α-SMA) and decreased phosphorylation of both MEK and ERK. Importantly, we observed a similar phenomenon in human primary fibroblasts. Our results thus highlight PLK1 as a promising therapeutic target for alleviating transplant-associated OB through suppression of TGF-β1-mediated myofibroblast differentiation.


Resident intruder paradigm-induced PMDD rat model of premenstrual irritability: behavioral phenotypes, drug intervention, and biomarkers.

  • Mingzhou Gao‎ et al.
  • Aging‎
  • 2022‎

Premenstrual dysphoric disorder (PMDD) is high in women of childbearing age with obvious premenstrual irritability. However, reliable animal models are still lacking.


Machine learning models predict the mTOR signal pathway-related signature in the gastric cancer involving 2063 samples of 7 centers.

  • Hao Zhang‎ et al.
  • Aging‎
  • 2023‎

Gastric cancer, as a tumor with poor prognosis, has been widely studied. Distinguishing the types of gastric cancer is helpful. Using the transcriptome data of gastric cancer in our study, relevant proteins of mTOR signaling pathway were screened to identify key genes by four machine learning models, and the models were validated in external datasets. Through correlation analysis, we explored the relationship between five key genes and immune cells and immunotherapy. By inducing cellular senescence in gastric cancer cells with bleomycin, we investigated changes in the expression levels of HRAS through western blot. By PCA clustering analysis, we used the five key genes for gastric cancer typing and explored differences in drug sensitivity and enrichment pathways between different clustering groups. We found that the SVM machine learning model was superior, and the five genes (PPARA, FNIP1, WNT5A, HRAS, HIF1A) were highly correlated with different immune cells in multiple databases. These five key genes have a significant impact on immunotherapy. Using the five genes for gastric cancer gene typing, four genes were expressed higher in group 1 and were more sensitive to drugs in group 2. These results suggest that subtype-specific markers can improve the treatment and provide precision drugs for gastric cancer patients.


SNRPB promotes the progression of hepatocellular carcinoma via regulating cell cycle, oxidative stress, and ferroptosis.

  • Xiaoyan Wang‎ et al.
  • Aging‎
  • 2024‎

Small Nuclear Ribonucleoprotein Polypeptides B and B1 (SNRPB) have been linked to multiple human cancers. However, the mechanism of SNRPB in hepatocellular carcinoma (HCC) and whether SNRPB has a synergistic effect with sorafenib in the treatment of HCC remain unclear. In this study, bioinformatic analysis found that SNRPB was an independent prognostic factor for HCC that exerted a critical effect on the progression of HCC. SNRPB was linked with immune checkpoints, cell cycle, oxidative stress and ferroptosis in HCC. Single cell sequencing analysis found that HCC cell subset with high expression of SNRPB, accounted for a higher proportion in HCC cells with higher stages, had higher expression levels of the genes which promote cell cycle, inhibit oxidative stress and ferroptosis, and had higher cell cycle score, lower oxidative stress score and ferroptosis score. Single-sample gene set enrichment analysis (ssGSEA) analysis found that 17 oxidative stress pathways and 68 oxidative stress-ferroptosis related genes were significantly correlated with SNRPB risk scores. SNRPB knockdown induced cell cycle G2/M arrest and restrained cell proliferation, while downregulated the expression of CDK1, CDK4, and CyclinB1. The combined treatment (SNRPB knockdown+sorafenib) significantly inhibited tumor growth. In addition, the expression of SLC7A11, which is closely-related to ferroptosis, decreased significantly in vitro and in vivo. Therefore, SNRPB may promote HCC progression by regulating immune checkpoints, cell cycle, oxidative stress and ferroptosis, while its downregulation inhibits cell proliferation, which enhances the therapeutic effect of sorafenib, providing a novel basis for the development of HCC therapies.


Long non-coding RNA AGAP2-AS1 increases the invasiveness of papillary thyroid cancer.

  • Liang Shao‎ et al.
  • Aging‎
  • 2020‎

Papillary thyroid cancer (PTC) is considered a low hazard endocrine system cancer, but a considerable number of patients have poor prognosis because of lymph node metastasis and invasion of surrounding tissues. In this study, we analyzed the expression and function of the long non-coding RNA (lncRNA) AGAP2-AS1 in PTC. We found that AGAP2-AS1 expression was significantly higher in human PTC tissues than adjacent noncancerous tissues (n=110; p<0.01) and correlated with lymph node metastasis (p=0.01) and tumor-node-metastasis stage (p=0.006). AGAP2-AS1 downregulation decreased migration and invasion by PTC cells, and reduced expression of matrix metalloproteinase-2 (MMP2). AGAP2-AS1 upregulated MMP2 expression by competitively binding to microRNA-425-5p. In addition, miR-424-5p expression was decreased in PTC tissues and correlates negatively with the AGAP2-AS1 levels. These results demonstrate that AGAP2-AS1 expression is significantly elevated in PTC tissues and that, by binding to miRNA-425-5p, it upregulates the MMP2 expression, thereby increasing the invasiveness and migration capacity of PTC cells.


Hepatoprotective effect of syringin combined with costunolide against LPS-induced acute liver injury in L-02 cells via Rac1/AKT/NF-κB signaling pathway.

  • Jingxin Mao‎ et al.
  • Aging‎
  • 2023‎

Acute liver injury (ALI) leads to abnormal liver function and damage to liver cells. Syringin (syr) and costunolide (cos) are the major extracts from Dolomiaea souliei (Franch.) C.Shih (D. souliei), showing diverse biological functions in various biological processes. We explored the underlying hepatoprotective effects of syr+cos against LPS-induced ALI. Cell viability and proliferation were assessed using an MTT assay and immunofluorescence staining. Flow cytometry analysis was used to detect cell cycle distribution and apoptosis. ELISA was utilized to measure liver function and antioxidant stress indexes. qRT-PCR and western blotting was performed to determine mRNA and protein levels respectively. Using shRNA approach to Rac1 analyzed transcriptional targets. The results showed that syr+cos promoted L-02 cell proliferation, inhibiting the cell apoptosis and blocking cell cycle in G1 and G2/M phase. Syr+cos decreased the production of ALT, AST, LDH, MDA and ROS while increased SOD and CAT activities. Pretreated with syr+cos may decrease expressions of caspase-3,7,9, NF-κB, TNF-α proteins, Cyclin B, CDK1 and p-IκB proteins while p-IκB increased. Silencing of Rac-1 may protect the liver by increasing AKT, S473, T308 and reducing p-AKT proteins. Syr+cos exhibits anti-ALI activity via Rac1/AKT/NF-κB signaling pathway which might act as an effective candidate drug for the treatment of ALI.


ALDOC promotes non-small cell lung cancer through affecting MYC-mediated UBE2N transcription and regulating Wnt/β-catenin pathway.

  • Bin Shang‎ et al.
  • Aging‎
  • 2023‎

Despite advancements in therapeutic options, the overall prognosis for non-small cell lung cancer (NSCLC) remains poor. Therefore, it is crucial to further explore the etiology and targets for novel treatments to effectively manage NSCLC. In this study, immunohistochemistry was used to analyze the expression of aldolase, fructose-bisphosphate C (ALDOC) protein in tumor tissues and adjacent non-malignant tissues from 79 NSCLC patients. Our findings revealed that ALDOC was overexpressed in NSCLC tissues. ALDOC expression was associated with lymph node metastasis, lymphatic metastasis and pathological stage. In addition, Kaplan-Meier analysis showed that higher ALDOC levels were indicative of a poorer prognosis. Additionally, we observed elevated ALDOC mRNA levels in NSCLC cell lines relative to normal cells. To investigate the functional roles of ALDOC, we infected cells with small interfering RNA against ALDOC, which led to attenuated proliferation and migration, as well as ameliorated apoptosis. Furthermore, through our investigations, we discovered that ubiquitin-conjugating enzyme E2N (UBE2N) acts as a downstream factor of ALDOC. ALDOC promoted NSCLC through affecting MYC-mediated UBE2N transcription and regulating the Wnt pathway. More importantly, we found that downregulation of UBE2N or the use of Wnt pathway inhibitor could reverse the promoting effects of ALDOC elevation on NSCLC development in vitro and in vivo. Based on these findings, our study highlights the potential of ALDOC as a future therapeutic target for NSCLC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: