Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B.

  • Di Chen‎ et al.
  • Molecular cell‎
  • 2022‎

Light and temperature in plants are perceived by a common receptor, phytochrome B (phyB). How phyB distinguishes these signals remains elusive. Here, we report that phyB spontaneously undergoes phase separation to assemble liquid-like droplets. This capacity is driven by its C terminus through self-association, whereas the intrinsically disordered N-terminal extension (NTE) functions as a biophysical modulator of phase separation. Light exposure triggers a conformational change to subsequently alter phyB condensate assembly, while temperature sensation is directly mediated by the NTE to modulate the phase behavior of phyB droplets. Multiple signaling components are selectively incorporated into phyB droplets to form concentrated microreactors, allowing switch-like control of phyB signaling activity through phase transitions. Therefore, light and temperature cues are separately read out by phyB via allosteric changes and spontaneous phase separation, respectively. We provide a conceptual framework showing how the distinct but highly correlated physical signals are interpreted and sorted by one receptor.


Rice black-streaked dwarf virus P10 acts as either a synergistic or antagonistic determinant during superinfection with related or unrelated virus.

  • Hehong Zhang‎ et al.
  • Molecular plant pathology‎
  • 2019‎

Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus, is a devastating pathogen of crop plants. RBSDV S10 encodes a capsid protein (P10) that is an important component of the double-layered particle. However, little information is available on the roles of RBSDV P10 in viral infection or in interactions with other viruses. Here, we demonstrate that the expression of P10 in plants alleviates the symptoms of both RBSDV and the closely related Southern rice black-streaked dwarf virus (SRBSDV), and reduces the disease incidence, but renders the plants more susceptible to the unrelated Rice stripe virus (RSV). Further experiments suggest that P10-mediated resistance to RBSDV and SRBSDV operates at the protein level, rather than the RNA level, and is not a result of post-transcriptional gene silencing. Transcriptomic data reveal that the expression of P10 in plants significantly suppresses the expression of rice defence-related genes, which may play important roles in resistance to RSV infection. After infection with RBSDV, plants are more resistant to subsequent challenge by SRBSDV, but more susceptible to RSV. Overall, these results indicate that P10 acts as an important effector in virus interactions.


Global transcriptome analysis of H5N1 influenza virus-infected human cells.

  • Ying Cao‎ et al.
  • Hereditas‎
  • 2019‎

Influenza A virus (IAV) belongs to the Orthomyxoviridae family. IAV causes a highly contagious respiratory disease in humans that exacts severe economic losses globally. The virus uses strategies developed to exploit and subvert cellular proteins and pathways to increase its own replication and to inhibit antiviral immune response.


The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection.

  • Kun Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.


Comparison and evaluation of non-invasive models in predicting liver inflammation and fibrosis of chronic hepatitis B virus-infected patients with high hepatitis B virus DNA and normal or mildly elevated alanine transaminase levels.

  • Lingmei Wang‎ et al.
  • Medicine‎
  • 2020‎

Few studies have paid attention to the performances of non-invasive models in diagnosing stages of liver fibrosis and inflammation, which are critical for early and accurate assessment of prognostication and decisions on antiviral treatment in chronic hepatitis B infection patients with high hepatitis B virus DNA and normal or mildly elevated alanine transaminase levels (≤2 times upper limit of normal (ULN)). This study aimed to investigate the value of routine serum markers in evaluation of liver inflammation and fibrosis in these patients.A total of 370 consecutive chronic hepatitis B virus-infected patients who underwent liver biopsy were retrospectively analyzed. The Scheuer scoring system was adopted as the pathological standard for diagnosing liver inflammation and fibrosis. The receiver-operating characteristic curves (ROC) and the area under the ROC curves (AUROCs) were used to analyze the performances of the models, including aspartate transaminase to platelet ratio index (APRI), fibrosis index based on the 4 factors (FIB-4), red cell volume distribution width-to-platelet ratio (RPR), globulin-platelet model (GP), and gamma-glutamyl transpeptidase to platelet ratio index (GPR).To predict significant inflammation (G ≥2), the AUROC of APRI was higher than that of FIB-4 (0.705 vs 0.629, P = .001), RPR (0.705 vs 0.593, P < .001) and GP (0.705 vs 0.620, P = .002), equivalent to that of GPR (0.705 vs 0.690, P = .606). As for severe inflammation (≥G3) and significant fibrosis (≥S2), there was no statistic difference among them. To predict severe fibrosis (≥ S3), the AUROC of FIB-4 was higher than that of RPR (0.805 vs 0.750, P = .006) and GP (0.805 vs 0.755, P = .046), comparable to that of APRI (0.805 vs 0.785, P = .550) and GPR (0.805 vs 0.818, P = .694). As for significant liver histological changes (G ≥ 2 or/and S ≥ 2), the performance of APRI was higher than that of RPR (0.717 vs 0.652, P = .006), GP (0.717 vs 0.659, p = .011), equivalent to that of FIB-4 (0.717 vs 0.692, P = .254) and GPR (0.717 vs 0.680, P = .166).We found that APRI, GPR, and FIB-4 were more effective than RPR and GP for diagnosing liver inflammation and fibrosis.


Effects of cinnamaldehyde on anti-respiratory syncytial virus: A protocol of systematic review and meta-analysis.

  • Lan Feng‎ et al.
  • Medicine‎
  • 2020‎

Previous reports found that cinnamaldehyde has effects on anti-respiratory syncytial virus (ARSV). However, their results are still contradictory. Therefore, this study will systematically address the effects of cinnamaldehyde on ARSV.


Robust induction of interferon and interferon-stimulated gene expression by influenza B/Yamagata lineage virus infection of A549 cells.

  • Pengtao Jiao‎ et al.
  • PloS one‎
  • 2020‎

Influenza B virus (IBV) belongs to the Orthomyxoviridae family and generally causes sporadic epidemics but is occasionally deadly to individuals. The current research mainly focuses on clinical and pathological characteristics of IBV. However, to better prevent or treat the disease, one must determine the strategies developed by IBV to invade and disrupt cellular proteins and approach to replicate itself, to suppress antiviral innate immunity, and understand how the host responds to IBV infection. The B/Shanghai/PD114/2018 virus was able to infect alveolar epithelial cells (A549) cells, with good potential for replication. To identify host cellular responses against IBV infection, differentially expressed genes (DEGs) were obtained using RNA sequencing. The GO and KEGG pathway term enrichment analyses with the DEGs were performed, and we found that the DEGs were primary involved in metabolic processes and cellular function, which may be related to the host response, including the innate immune response against the virus. Our transcriptome analysis results demonstrated robust induction of interferon and interferon-stimulated gene expression by IBV in human cells during the early stages of infection, providing a foundation for further studies focused on antiviral drug development and interactions between the virus and host.


The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication.

  • Wei Wang‎ et al.
  • eLife‎
  • 2017‎

No evidence has shown whether insect-borne viruses manipulate the c-Jun N-terminal kinase (JNK) signaling pathway of vector insects. Using a system comprising the plant virus Rice stripe virus (RSV) and its vector insect, the small brown planthopper, we have studied the response of the vector insect's JNK pathway to plant virus infection. We found that RSV increased the level of Tumor Necrosis Factor-α and decreased the level of G protein Pathway Suppressor 2 (GPS2) in the insect vector. The virus capsid protein competitively bound GPS2 to release it from inhibiting the JNK activation machinery. We confirmed that JNK activation promoted RSV replication in the vector, whereas JNK inhibition caused a significant reduction in virus production and thus delayed the disease incidence of plants. These findings suggest that inhibition of insect vector JNK may be a useful strategy for controling the transmission of plant viruses.


Establishment of virus-induced gene silencing (VIGS) system in Luffa acutangula using Phytoene desaturase (PDS) and tendril synthesis related gene (TEN).

  • Xiaoyu Qi‎ et al.
  • Plant methods‎
  • 2023‎

Virus-induced gene silencing (VIGS) is a reverse genetics technology that can efficiently and rapidly identify plant gene functions. Although a variety of VIGS vectors have been successfully used in plants, only a few reports on VIGS technology in Luffa exist.


β-sitosterol ameliorates influenza A virus-induced proinflammatory response and acute lung injury in mice by disrupting the cross-talk between RIG-I and IFN/STAT signaling.

  • Bei-Xian Zhou‎ et al.
  • Acta pharmacologica Sinica‎
  • 2020‎

β-Sitosterol (24-ethyl-5-cholestene-3-ol) is a common phytosterol Chinese medical plants that has been shown to possess antioxidant and anti-inflammatory activity. In this study we investigated the effects of β-sitosterol on influenza virus-induced inflammation and acute lung injury and the molecular mechanisms. We demonstrate that β-sitosterol (150-450 μg/mL) dose-dependently suppresses inflammatory response through NF-κB and p38 mitogen-activated protein kinase (MAPK) signaling in influenza A virus (IAV)-infected cells, which was accompanied by decreased induction of interferons (IFNs) (including Type I and III IFN). Furthermore, we revealed that the anti-inflammatory effect of β-sitosterol resulted from its inhibitory effect on retinoic acid-inducible gene I (RIG-I) signaling, led to decreased STAT1 signaling, thus affecting the transcriptional activity of ISGF3 (interferon-stimulated gene factor 3) complexes and resulting in abrogation of the IAV-induced proinflammatory amplification effect in IFN-sensitized cells. Moreover, β-sitosterol treatment attenuated RIG-I-mediated apoptotic injury of alveolar epithelial cells (AEC) via downregulation of pro-apoptotic factors. In a mouse model of influenza, pre-administration of β-sitosterol (50, 200 mg·kg-1·d-1, i.g., for 2 days) dose-dependently ameliorated IAV-mediated recruitment of pathogenic cytotoxic T cells and immune dysregulation. In addition, pre-administration of β-sitosterol protected mice from lethal IAV infection. Our data suggest that β-sitosterol blocks the immune response mediated by RIG-I signaling and deleterious IFN production, providing a potential benefit for the treatment of influenza.


Molecular dissection of the first Staphylococcus cohnii temperate phage IME1354_01.

  • Fengjuan Tian‎ et al.
  • Virus research‎
  • 2022‎

In staphylococcal phage research, studies specific to coagulase-negative staphylococci (CoNS) remain severely under-represented, and the number of temperate bacteriophages is limited. This investigation identifies a novel temperate phage IME1354_01 from the strain Staphylococcus cohnii IME1354, which was isolated from the skin of a patient with foot ulcer disease. The phage IME1354_01 is the first isolated temperate phage of S. cohnii, and was determined to have a long-tail morphology using TEM. Its genome was found to be a 42,706-bp linear dsDNA molecule with a GC content of 34%. The integration of IME1354_01 occurred using a tRNA-Ser coding gene, and it did not affect tRNA-Ser function. The genome of IME1354_01 is most closely related to that of the temperate Staphylococcus arlettae phage vB_Sars_BM31 with 10% homology coverage and 83.73% nucleotide identity. In addition, they showed similarities mainly in the DNA replication, DNA packaging and partial morphogenesis modules. We propose that a new genus should be created for IME1354_01 based on the intergenomic similarities (maximum is 23%) obtained from the VIRIDIC calculations. The isolation and in-depth study of the novel phage, IME1354_01, will improve our understanding of the evolutionary relationship between temperate phages and their hosts.


Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells.

  • Erik C Hansen‎ et al.
  • eLife‎
  • 2016‎

We report that a major subpopulation of monocyte-derived macrophages (MDMs) contains high levels of dUTP, which is incorporated into HIV-1 DNA during reverse transcription (U/A pairs), resulting in pre-integration restriction and post-integration mutagenesis. After entering the nucleus, uracilated viral DNA products are degraded by the uracil base excision repair (UBER) machinery with less than 1% of the uracilated DNA successfully integrating. Although uracilated proviral DNA showed few mutations, the viral genomic RNA was highly mutated, suggesting that errors occur during transcription. Viral DNA isolated from blood monocytes and alveolar macrophages (but not T cells) of drug-suppressed HIV-infected individuals also contained abundant uracils. The presence of viral uracils in short-lived monocytes suggests their recent infection through contact with virus producing cells in a tissue reservoir. These findings reveal new elements of a viral defense mechanism involving host UBER that may be relevant to the establishment and persistence of HIV-1 infection.


Mapping the early life gut microbiome in neonates with critical congenital heart disease: multiomics insights and implications for host metabolic and immunological health.

  • Yuan Huang‎ et al.
  • Microbiome‎
  • 2022‎

The early life gut microbiome is crucial in maintaining host metabolic and immune homeostasis. Though neonates with critical congenital heart disease (CCHD) are at substantial risks of malnutrition and immune imbalance, the microbial links to CCHD pathophysiology remain poorly understood. In this study, we aimed to investigate the gut microbiome in neonates with CCHD in association with metabolomic traits. Moreover, we explored the clinical implications of the host-microbe interactions in CCHD.


Clonally expanded HIV-1 proviruses with 5'-leader defects can give rise to nonsuppressible residual viremia.

  • Jennifer A White‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

BackgroundAntiretroviral therapy (ART) halts HIV-1 replication, decreasing viremia to below the detection limit of clinical assays. However, some individuals experience persistent nonsuppressible viremia (NSV) originating from CD4+ T cell clones carrying infectious proviruses. Defective proviruses represent over 90% of all proviruses persisting during ART and can express viral genes, but whether they can cause NSV and complicate ART management is unknown.MethodsWe undertook an in-depth characterization of proviruses causing NSV in 4 study participants with optimal adherence and no drug resistance. We investigated the impact of the observed defects on 5'-leader RNA properties, virus infectivity, and gene expression. Integration-site specific assays were used to track these proviruses over time and among cell subsets.ResultsClones carrying proviruses with 5'-leader defects can cause persistent NSV up to approximately 103 copies/mL. These proviruses had small, often identical deletions or point mutations involving the major splicing donor (MSD) site and showed partially reduced RNA dimerization and nucleocapsid binding. Nevertheless, they were inducible and produced noninfectious virions containing viral RNA, but lacking envelope.ConclusionThese findings show that proviruses with 5'-leader defects in CD4+ T cell clones can give rise to NSV, affecting clinical care. Sequencing of the 5'-leader can help in understanding failure to completely suppress viremia.FundingOffice of the NIH Director and National Institute of Dental and Craniofacial Research, NIH; Howard Hughes Medical Institute; Johns Hopkins University Center for AIDS Research; National Institute for Allergy and Infectious Diseases (NIAID), NIH, to the PAVE, BEAT-HIV, and DARE Martin Delaney collaboratories.


High CYP2E1 activity correlates with hepatofibrogenesis induced by nitrosamines.

  • Jie Gao‎ et al.
  • Oncotarget‎
  • 2017‎

Hepatofibrosis, which leads to cirrhosis and eventual hepatocellular carcinoma, is a common response to chronic toxin-mediated liver injury. Nitrosamines are potent hepatotoxic agents that cause necrosis and subsequent fibrosis in the liver as a result of cytochrome P450 2E1 (CYP2E1)-dependent metabolism, which generates toxic metabolites that form adducts with nucleic acids, leading to hepatotoxicity and mutagenesis. Herein, CYP2E1 activity and content were determined in fibrotic liver tissue from patients with hepatocellular carcinoma. The relationship between CYP2E1 innate activity and hepatofibrogenesis was evaluated, the effect of inhibition of CYP2E1 activity on hepatofibrosis was determined in a Sprague-Dawley rat model of diethylnitrosamine-induced hepatofibrosis. The results demonstrated that the CYP2E1 activities in human fibrotic tissues are significantly higher than that in normal liver tissues. In rats treated with diethylnitrosamine, the livers demonstrated various degree of fibrotic changes and collagen deposition in individual rats. The Ishak score, which determines the stage of fibrosis, correlated with CYP2E1 innate activity, with greater fibrosis in rat livers with higher CYP2E1 innate activity. Inhibition of CYP2E1 during diethylnitrosamine treatment decreased hepatofibrosis and there was an inverse correlation between the degree of inhibition and the extent of hepatofibrosis. Therefore, high CYP2E1 activity is a risk factor for hepatofibrogenesis induced by nitrosamines.


Cytokine Storm in Coronavirus Disease 2019 and Adult-Onset Still's Disease: Similarities and Differences.

  • Jianfen Meng‎ et al.
  • Frontiers in immunology‎
  • 2020‎

The catastrophic outbreak of coronavirus disease 2019 (COVID-19) is currently a public emergency. Adult-onset Still's disease (AOSD) is an autoinflammatory disease characterized by life-threatening complications. Systemic hyperinflammation and cytokine storm play a critical role in the pathogenesis of both COVID-19 and AOSD. We aimed to compare the similarities and differences focusing on ferritin and cytokine levels between severe COVID-19 and active AOSD. A literature search was performed using the databases PubMed, EMBASE, and Web of Science to collect the levels of cytokine including IL-1β, IL-6, IL-18, TNF-α, IL-10, and ferritin in severe COVID-19 patients. After extracting available data of indicators of interest, we acquired these statistics with a single-arm meta-analysis. Furthermore, a comparison was conducted between 52 patients with active AOSD in our center and severe COVID-19 patients from databases. The levels of IL-6 and IL-10 were higher in severe COVID-19 compared with those in active AOSD. There were no significant differences on the cytokine of IL-1β and TNF-α. Fold changes of IL-18 were defined as the mean expression level ratio of severe COVID-19 to healthy controls in the COVID-19 study and active AOSD to healthy controls in our study, individually. Although the fold change of IL-18 in patients with AOSD was significantly higher than patients with severe COVID-19 (fold change: 594.00 vs 2.17), there was no statistical comparability. In addition, the level of ferritin was higher in active AOSD in comparison with severe COVID-19. Our findings suggest that severe COVID-19 and active AOSD have differences in cytokine panel and ferritin level, indicating the pathogenic role of ferritin in overwhelming inflammation. And it paves the way to make efficacy therapeutic strategy targeting the hyperinflammatory process in COVID-19 according to AOSD management, especially in severe COVID-19.


Prevalence and associated knowledge of hepatitis B infection among healthcare workers in Freetown, Sierra Leone.

  • Yu-Ling Qin‎ et al.
  • BMC infectious diseases‎
  • 2018‎

Hepatitis B virus (HBV) is considered highly prevalent in West Africa. However, major gaps in surveillance exist in Sierra Leone. Although healthcare workers (HCWs) are at high risk for HBV infection, little is known about the prevalence and knowledge of hepatitis B among HCWs in Sierra Leone.


Predictive value of pentraxin-3 on disease severity and mortality risk in patients with hemorrhagic fever with renal syndrome.

  • Hong Du‎ et al.
  • BMC infectious diseases‎
  • 2021‎

Hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus is characterized by systemic immunopathological injury. Pentraxin-3 is an acute-phase reactant involved in the processes of inflammation and infection. This study aimed to investigate the levels of plasma pentraxin-3 and evaluate its predictive value on disease severity and mortality risk in patients with HFRS.


Rapid detection of porcine circovirus type 2 by a red latex microsphere immunochromatographic strip.

  • Chong Yu‎ et al.
  • Applied microbiology and biotechnology‎
  • 2022‎

To establish a rapid and specific antigen detection method for porcine circovirus type 2 (PCV2), monoclonal antibodies (mAbs) were produced against the PCV2 epidemic strains and a red latex microsphere immunochromatographic strip was established. A total of eight anti-PCV2b and four anti-PCV2d mAbs were produced, and seven mAbs were confirmed to react with PCV2a, PCV2b, and PCV2d strains using an immunoperoxidase monolayer assay. The results of micro-neutralization tests showed that the mAbs 2C8, 9H4, 10G7, 7B9, and 7C7 had good neutralizing activity, whereas the neutralizing activity of the mAbs 4B3, 4C9, 6H9, and 7E2 was lower than 50%. Three mAbs, 4B3, 7C7, and 9H4, and PCV2 pAb were selected for the establishment of a red latex microsphere immunochromatographic strip, and the combination of mAb 7C7 labeled with red latex microspheres and mAb 9H4 exhibited the greatest detection ability. The immunochromatographic strip had minimum detection limits of 102.5 TCID50/0.1 ml, 100.7 TCID50/0.1 ml, and 101.5 TCID50/0.1 ml for PCV2a/CL, PCV2b/MDJ, and PCV2d/LNHC, respectively. Furthermore, no cross-reactivity was found for African swine fever virus, classical swine fever virus, porcine respiratory and reproductive syndrome virus, porcine parvovirus, porcine pseudorabies virus, porcine circovirus type 1, transmissible gastroenteritis virus, porcine epidemic diarrhea virus, porcine rotavirus, or porcine deltacoronavirus using the immunochromatographic strip. Using PCR as a reference standard, the detection sensitivity, specificity, and overall coincidence rate of the immunochromatographic strip were 81.13%, 100%, and 90.00%. Additionally, the detection ability of the immunochromatographic strip was correlated with that of virus titration. The immunochromatographic strip was used to detect 183 clinical disease samples, and the average positive detection rate was 22.95%. In summary, this method has good sensitivity and specificity and is simple, convenient, and quick to operate. It has high application value for on-site diagnosis of PCV2 and virus quantification. KEY POINTS: • A red latex microsphere immunochromatographic strip for PCV2 detection was developed. • The method was not only simple to operate, but also takes less time. • The method had good sensitivity and specificity.


Transcriptional Reprogramming during Effector-to-Memory Transition Renders CD4+ T Cells Permissive for Latent HIV-1 Infection.

  • Liang Shan‎ et al.
  • Immunity‎
  • 2017‎

The latent reservoir for HIV-1 in resting memory CD4+ T cells is the major barrier to curing HIV-1 infection. Studies of HIV-1 latency have focused on regulation of viral gene expression in cells in which latent infection is established. However, it remains unclear how infection initially becomes latent. Here we described a unique set of properties of CD4+ T cells undergoing effector-to-memory transition including temporary upregulation of CCR5 expression and rapid downregulation of cellular gene transcription. These cells allowed completion of steps in the HIV-1 life cycle through integration but suppressed HIV-1 gene transcription, thus allowing the establishment of latency. CD4+ T cells in this stage were substantially more permissive for HIV-1 latent infection than other CD4+ T cells. Establishment of latent HIV-1 infection in CD4+ T could be inhibited by viral-specific CD8+ T cells, a result with implications for elimination of latent HIV-1 infection by T cell-based vaccines.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: