Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 311 papers

Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.

  • Yuhao Cheng‎ et al.
  • Nature communications‎
  • 2015‎

Photodynamic therapy (PDT) kills cancer cells by converting tumour oxygen into reactive singlet oxygen ((1)O2) using a photosensitizer. However, pre-existing hypoxia in tumours and oxygen consumption during PDT can result in an inadequate oxygen supply, which in turn hampers photodynamic efficacy. Here to overcome this problem, we create oxygen self-enriching photodynamic therapy (Oxy-PDT) by loading a photosensitizer into perfluorocarbon nanodroplets. Because of the higher oxygen capacity and longer (1)O2 lifetime of perfluorocarbon, the photodynamic effect of the loaded photosensitizer is significantly enhanced, as demonstrated by the accelerated generation of (1)O2 and elevated cytotoxicity. Following direct injection into tumours, in vivo studies reveal tumour growth inhibition in the Oxy-PDT-treated mice. In addition, a single-dose intravenous injection of Oxy-PDT into tumour-bearing mice significantly inhibits tumour growth, whereas traditional PDT has no effect. Oxy-PDT may enable the enhancement of existing clinical PDT and future PDT design.


Efficient inhibition of ovarian cancer by degradable nanoparticle-delivered survivin T34A gene.

  • Li Luo‎ et al.
  • International journal of nanomedicine‎
  • 2016‎

Gene therapy has promising applications in ovarian cancer therapy. Blocking the function of the survivin protein could lead to the growth inhibition of cancer cells. Herein, we used degradable heparin-polyethyleneimine (HPEI) nanoparticles to deliver a dominant-negative human survivin T34A (hs-T34A) gene to treat ovarian cancer. HPEI nanoparticles were characterized and were found to have a dynamic diameter of 66±4.5 nm and a zeta potential of 27.1±1.87 mV. The constructed hs-T34A gene expression plasmid could be effectively delivered into SKOV3 ovarian carcinoma cells by HPEI nanoparticles with low cytotoxicity. Intraperitoneal administration of HPEI/hs-T34A complexes could markedly inhibit tumor growth in a mouse xenograft model of SKOV3 human ovarian cancer. Moreover, according to our results, apparent apoptosis of cancer cells was observed both in vitro and in vivo. Taken together, the prepared HPEI/hs-T34A formulation showed potential applications in ovarian cancer gene therapy.


Multi-target siRNA: Therapeutic Strategy for Hepatocellular Carcinoma.

  • Tiejun Li‎ et al.
  • Journal of Cancer‎
  • 2016‎

Multiple targets RNAi strategy is a preferred way to treat multigenic diseases, especially cancers. In the study, multi-target siRNAs were designed to inhibit NET-1, EMS1 and VEGF genes in hepatocellular carcinoma (HCC) cells. And multi-target siRNAs showed better silencing effects on NET-1, EMS1 and VEGF, compared with single target siRNA. Moreover, multi-target siRNA showed greater suppression effects on proliferation, migration, invasion, angiogenesis and induced apoptosis in HCC cells. The results suggested that multi-target siRNA might be a preferred strategy for cancer therapy and NET-1, EMS1 and VEGF could be effective targets for HCC treatments.


Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets.

  • Huansheng Yang‎ et al.
  • PloS one‎
  • 2016‎

The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets.


A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean.

  • Qing Wang‎ et al.
  • BMC genomics‎
  • 2016‎

Phosphorus is one of the most important macronutrients that is required for plant growth and development. However, stress under low-P conditions has become a limiting factor that affects crop yields and qualities. Plants have developed strategies to cope with this, while few genes associated with low-P tolerance have been identified in soybean.


Transcriptome Analysis Reveals Key Flavonoid 3'-Hydroxylase and Flavonoid 3',5'-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis.

  • Kang Wei‎ et al.
  • PloS one‎
  • 2015‎

The ratio of dihydroxylated to trihydroxylated catechins (RDTC) is an important indicator of tea quality and biochemical marker for the study of genetic diversity. It is reported to be under genetic control but the underlying mechanism is not well understood. Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) are key enzymes involved in the formation of dihydroxylated and trihydroxylated catechins. The transcriptome and HPLC analysis of tea samples from Longjing43 and Zhonghuang2 under control and shading treatment were performed to assess the F3'H and F3'5'H genes that might affect RDTC. A total of 74.7 million reads of mRNA seq (2×101bp) data were generated. After de novo assembly, 109,909 unigenes were obtained, and 39,982 of them were annotated using 7 public databases. Four key F3'H and F3'5'H genes (including CsF3'5'H1, CsF3'H1, CsF3'H2 and CsF3'H3) were identified to be closely correlated with RDTC. Shading treatment had little effect on RDTC, which was attributed to the stable expression of these key F3'H and F3'5'H genes. The correlation of the coexpression of four key genes and RDTC was further confirmed among 13 tea varieties by real time PCR and HPLC analysis. The coexpression of three F3'H genes and a F3'5'H gene may play a key role in affecting RDTC in Camellia sinensis. The current results may establish valuable foundation for further research about the mechanism controlling catechin composition in tea.


Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway.

  • Yulong Tang‎ et al.
  • Free radical biology & medicine‎
  • 2015‎

Autophagy is an intracellular process of homeostatic degradation that promotes cell survival under various stressors. Deoxynivalenol (DON), a fungal toxin, often causes diarrhea and disturbs the homeostasis of the intestinal system. To investigate the function of intestinal autophagy in response to DON and associated mechanisms, we firstly knocked out ATG5 (autophagy-related gene 5) in porcine intestinal epithelial cells (IPEC-J2) using CRISPR-Cas9 technology. When treated with DON, autophagy was induced in IPEC-J2 cells but not in IPEC-J2.Atg5ko cells. The deficiency in autophagy increased DON-induced apoptosis in IPEC-J2.atg5ko cells, in part, through the generation of reactive oxygen species (ROS). The cellular stress response can be restored in IPEC-J2.atg5ko cells by overexpressing proteins involved in protein folding. Interestingly, we found that autophagy deficiency downregulated the expression of endoplasmic reticulum folding proteins BiP and PDI when IPEC-J2.atg5ko cells were treated with DON. In addition, we investigated the molecular mechanism of autophagy involved in the IKK, AMPK, and mTOR signaling pathway and found that Bay-117082 and Compound C, specific inhibitors for IKK and AMPK, respectively, inhibited the induction of autophagy. Taken together, our results suggest that autophagy is pivotal for protection against DON in pig intestinal cells.


Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets.

  • Jie Yin‎ et al.
  • PloS one‎
  • 2015‎

This study aimed to investigate the protective effects of dietary glutamate and aspartate supplementations on diquat-induced oxidative stress in piglets. Diquat injection significantly reduced growth performance, including body weight, average daily weight gain, and feed intake (P<0.05). Meanwhile, diquat administration induced oxidative stress evidenced by the decreased serum nitric oxide (NO) and elevated malondialdeyhde (MDA) concentration (P<0.05). Furthermore, diquat-induced oxidative stress disrupted intestinal absorption system and decreased serum threonine, serine, and glycine levels. Dietary supplementation with glutamate improved final body weight, antioxidant system, and expressions of amino acids transporters and enhanced serum glutamate concentration compared with diquat group (P<0.05). While aspartate failed to alleviate diquat-induced oxidative stress, growth depression, and dysfunction of nutrients absorption except for liver relative weight. In conclusion, dietary supplementation with glutamate confers beneficial effects on diquat-induced oxidative stress in piglets, while aspartate exhibits little effects.


An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol.

  • Miaomiao Wu‎ et al.
  • PloS one‎
  • 2014‎

Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino acid metabolism induced by DON.


Eight proteins play critical roles in RCC with bone metastasis via mitochondrial dysfunction.

  • Jiang Wang‎ et al.
  • Clinical & experimental metastasis‎
  • 2015‎

Most kidney cancers are renal cell carcinomas (RCC). RCC lacks early warning signs and 70 % of patients with RCC develop metastases. Among them, 50 % of patients having skeletal metastases developed a dismal survival of less than 10 % at 5 years. Therefore, exploring the key driving proteins and pathways involved in RCC bone metastasis could benefit patients' therapy and prolong their survival. We examined the difference between the OS-RC-2 cells and the OS-RC-2-BM5 cells (subpopulation from OS-RC-2) of RCC with proteomics. Then we employed Western-blot, immunohistochemistry and the clinical database (oncomine) to screen and verify the key proteins and then we analyzed the functions and the related pathways of selected key proteins with system biology approaches. Our proteomic data revealed 26 significant changed spots (fold change <0.5 and >1.9, P < 0.05) between two cells. The Western blotting results validated for these identified spots were consistent with the proteomics'. From the public clinical database, 23 out of 26 proteins were connected with RCC metastases and 9 out of 23 with survival time directly (P < 0.05). Finally, only 8 out of 9 proteins had significantly positive results in tissues of RCC patients with bone metastasis compared with primary tumor (P < 0.05). System biology analyzing results showed these eight proteins mainly distributed in oxidative phosphorylation which indicates that mitochondria dysfunction played the critical role to regulate cells metastasis. Our article used a variety of experimental techniques to find eight proteins which abnormally regulated mitochondrial function to achieve a successful induction for RCC metastasis to bone.


Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation.

  • Zhenjian Li‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

Compared to free (free-living) cells, biofilm cells show increased resistance and stability to high-pressure fermentation conditions, although the reasons underlying these phenomena remain unclear. Here, we investigated biofilm formation with immobilized Saccharomyces cerevisiae cells grown on fiber surfaces during the process of ethanol fermentation. The development of biofilm colonies was visualized by fluorescent labeling and confocal microscopy. RNA from yeast cells at three different biofilm development periods was extracted and sequenced by high-throughput sequencing. We quantitated gene expression differences between biofilm cells and free cells and found that 2098, 1556, and 927 genes were significantly differentially expressed, respectively. We also validated the expression of previously reported genes and identified novel genes and pathways under the control of this system. Statistical analysis revealed that biofilm genes show significant gene expression changes principally in the initial period of biofilm formation compared to later periods. Carbohydrate metabolism, amino acid metabolism, signal transduction, and oxidoreductase activity were needed for biofilm formation. In contrast to previous findings, we observed some differential expression performances of FLO family genes, indicating that cell aggregation in our immobilized fermentation system was possibly independent of flocculation. Cyclic AMP-protein kinase A and mitogen-activated protein kinase pathways regulated signal transduction pathways during yeast biofilm formation. We found that carbohydrate metabolism, especially glycolysis/gluconeogenesis, played a key role in the development of S. cerevisiae biofilms. This work provides an important dataset for future studies aimed at gaining insight into the regulatory mechanisms of immobilized cells in biofilms, as well as for optimizing bioprocessing applications with S. cerevisiae.


High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing.

  • Li-Yi Xu‎ et al.
  • BMC genomics‎
  • 2018‎

Flavonoids are important components that confer upon tea plants a unique flavour and health functions. However, the traditional breeding method for selecting a cultivar with a high or unique flavonoid content is time consuming and labour intensive. High-density genetic map construction associated with quantitative trait locus (QTL) mapping provides an effective way to facilitate trait improvement in plant breeding. In this study, an F1 population (LJ43×BHZ) was genotyped using 2b-restriction site-associated DNA (2b-RAD) sequencing to obtain massive single nucleotide polymorphism (SNP) markers to construct a high-density genetic map for a tea plant. Furthermore, QTLs related to flavonoids were identified using our new genetic map.


A new class of biological materials: Cell membrane-derived hydrogel scaffolds.

  • Zhiyuan Fan‎ et al.
  • Biomaterials‎
  • 2019‎

Biological materials are superior to synthetic biomaterials in biocompatibility and active interactions with cells. Here, a new class of biological materials, cell membrane-derived hydrogel scaffolds are reported for harnessing these advantages. To form macroporous scaffolds, vesicles derived from red blood cell membranes (RBCMs) are chemically crosslinked via cryogelation. The RBCM scaffolds with a pore size of around 70 μm are soft and injectable. Highly biocompatible scaffolds are typically made of superhydrophilic polymers and lack the ability to encapsulate and release hydrophobic drugs in a controlled manner. However, hydrophobic molecules can be efficiently encapsulated inside RBCM scaffolds and be sustainedly released. RBCM scaffolds show low neutrophil infiltration after subcutaneous injection in mice, and a significantly higher number of infiltrated macrophages than methacrylate alginate (MA-alginate) scaffolds. According to gene expression and surface markers, these macrophages have an M2-like phenotype, which is anti-inflammatory and immune suppressive. There are also higher percentages of macrophages presenting immunosuppressive PD-L1 in RBCM-scaffolds than in MA-alginate scaffolds. Interestingly, the concentrations of anti-inflammatory cytokine, IL-10 in both types of scaffolds are higher than those in normal organ tissues. This study sheds light on cell membrane-derived hydrogels, which can actively modulate cells in unique ways unavailable to existing hydrogel scaffolds.


Cardioprotective effects of monocyte locomotion inhibitory factor on myocardial ischemic injury by targeting vimentin.

  • Shu Jiang‎ et al.
  • Life sciences‎
  • 2016‎

Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide produced by Entamoeba histolytica, has anti-inflammatory function and protective effect on ischemic stroke. In this study, we evaluated the effect of MLIF on myocardial ischemia. Mice were subjected to ischemia/reperfusion by occlusion of the left anterior descending artery (LAD). After sacrifice, the serum concentrations of cardiac troponin I (cTnI), creatine kinase (CK), lactate dehydrogenase (LDH) as well as the heart infarct size were measured. HE and TUNEL staining were used to observe the pathological damage and the apoptotic cells. For in vitro study, the oxygen-glucose deprivation(OGD) model was established in H9c2 cells. MTT assay and flow cytometry assay were performed to evaluate cell viability and apoptosis. The expression of JNK and caspase 3 was assessed by western blot analysis. Pull-down assay was used to detect the specific binding protein of MLIF in myocardial cells. MLIF significantly reduced the infarct size, and the cTnI, CK and LDH levels, amelioratived pathological damage and reduced the apopotosis compared with the myocardial I/R model group. MLIF improved cell survival and inhibited apoptosis and necrosis by inhibiting the p-JNK and cleaved caspase3 expression. Furthermore, the binding protein of MLIF in myocardial cells was vimentin. Inhibition of vimentin expression by withaferin A or vimentin siRNA repressed the protective effects of MLIF in OGD-provoked H9c2 cells. Taken together, our results demonstrate that the cardioprotective effects of MLIF on myocardial ischemia injury are related to reductions in the inflammatory response and apoptosis by targeting vimentin.


The Efficacy and Pharmacological Mechanism of Zn7MT3 to Protect against Alzheimer's Disease.

  • Wei Xu‎ et al.
  • Scientific reports‎
  • 2017‎

Alzheimer's disease (AD) is one of the leading causes of death for people over 65 years. Worse still, no completely effective therapeutic agent is available so far. One important pathological hallmark of AD is accumulated amyloid-β (Aβ) plaques with dysregulated metal homeostasis. Human metallothionin 3 (MT3), a regulator of metal homeostasis, is downregulated at least 30% in AD brain. So far, some in vitro studies demonstrated its multiple functions related to AD. However, it is a great pity that systematic in vivo studies of MT3 on AD model animals are still a blank so far. In this study, we treated APP/PS1 mice with sustained drug release of Zn7MT3 directly to the central nervous system, and investigated the role and molecular mechanism of Zn7MT3 to protect against AD mice systematically. The results demonstrated that Zn7MT3 can significantly ameliorate cognitive deficits, regulate metal homeostasis, abolish Aβ plaque load, and reduce oxidative stress. Additionally, it has been confirmed that MT3 is penetrable to the blood brain barrier of AD mice. All these results support that Zn7MT3 is an effective AD suppressing agent and has potential for applications in Alzheimer's disease therapy.


LILRA3 binds both classical and non-classical HLA class I molecules but with reduced affinities compared to LILRB1/LILRB2: structural evidence.

  • Myongchol Ryu‎ et al.
  • PloS one‎
  • 2011‎

Structurally, Group 1 LILR (Leukocyte Immunoglobulin (Ig)-Like Receptor, also known as Ig-like transcripts, ILT; Leukocyte Ig-like receptor, LIR; and CD85) members are very similar in terms of the HLAIs (human leukocyte antigen class I molecules) binding region and were hypothesized that they all bind to HLAIs. As one of the Group 1 LILRs, LILRA3 is the only secretory LILR and may greatly control the inhibitory immune response induced by LILRB1, LILRB2, and other HLA-binding LILR molecules like LILRA1. Nevertheless, little was known about the binding of LILRA3 to HLAIs. In this report, we present the crystal structure of the LILRA3 domain 1 (D1) and evaluate the D1 and D1D2 (domain 1 and domain 2) binding to classical and non-classical HLAIs using BIAcore® surface plasmon resonance analysis (SPR). We found that LILRA3 binds both classical HLA-A*0201 and non-classical HLA-G1 but with reduced affinities compared to either LILRB1 or LILRB2. The polymorphic amino acids and the LILRA3 D1 structure support this notion.


Molecular cloning and characterization of a novel dual-specificity phosphatase 23 gene from human fetal brain.

  • Qihan Wu‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2004‎

Most of dual-specificity protein phosphatases (DSPs) play an important role in the regulation of mitogenic signal transduction and controlling the cell cycle in response to extracellular stimuli. In this study, a novel human dual-specificity protein phosphatases gene named dual-specificity phosphatase 23 (DUSP23) was isolated by large-scale sequencing analysis of a human fetal brain cDNA library. Its cDNA was 726 bp in length, encoding a 150-amino acid polypeptide which contained a dual-specificity phosphatase catalytic (DSPc) domain but not a CDC25 homology (CH2) domain. Reverse transcription-PCR (RT-PCR) revealed that the DUSP23 was expressed in most fetal tissues and two adult tissues: testis and colon. Transient transfection experiment suggested that DUSP23 was localized in the cytoplasm of HEK293 cells. DUSP23 showed distinctive phosphatase activity toward p-nitrophenyl phosphate (pNPP), as well as oligopeptides containing phospho-tyrosine and phospho-threonine residues. Furthermore, DUSP23 could dephosphorylate p44ERK1 but not p38 and p54SAPKbeta in vitro. All the results indicated that DUSP23 was a novel protein phosphatase with dual substrate specificity.


Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells in vitro and in vivo.

  • Hao Cheng‎ et al.
  • Oncotarget‎
  • 2017‎

Ellagic aicd (EA), a dietary polyphenolic compound found in plants and fruits, possesses various pharmacological activities. This study investigated the effect of EA on human pancreatic carcinoma PANC-1 cells both in vitro and in vivo; and defined the associated molecular mechanisms. In vitro, the cell growth and repairing ability were assessed by CCK-8 assay and wound healing assay. The cell migration and invasion activity was evaluated by Tanswell assay. In vivo, PANC-1 cell tumor-bearing mice were treated with different concentrations of EA. We found that EA significantly inhibited cell growth, cell repairing activity, and cell migration and invasion in a dose-dependent manner. Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth and prolong mice survival rate. Furthermore, flow cytometric analysis showed that EA increased the percentage of cells in the G1 phase of cell cycle. Western blot analysis revealed that EA inhibited the expression of COX-2 and NF-κB. In addition, EA reversed epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. In summary, the present study demonstrated that EA inhibited cell growth, cell repairing activity, cell migration and invasion in a dose-dependent manner. EA also effectively inhibit human pancreatic cancer growth in mice. The anti-tumor effect of EA might be related to cell cycle arrest, down-regulating the expression of COX-2 and NF-κB, reversing epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. Our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer.


Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China.

  • Peng Wu‎ et al.
  • PloS one‎
  • 2016‎

The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments.


An advanced fragment analysis-based individualized subtype classification of pediatric acute lymphoblastic leukemia.

  • Han Zhang‎ et al.
  • Scientific reports‎
  • 2015‎

Pediatric acute lymphoblastic leukemia (ALL) is the most common neoplasm and one of the primary causes of death in children. Its treatment is highly dependent on the correct classification of subtype. Previously, we developed a microarray-based subtype classifier based on the relative expression levels of 62 marker genes, which can predict 7 different ALL subtypes with an accuracy as high as 97% in completely independent samples. Because the classifier is based on gene expression rank values rather than actual values, the classifier enables an individualized diagnosis, without the need to reference the background distribution of the marker genes in a large number of other samples, and also enables cross platform application. Here, we demonstrate that the classifier can be extended from a microarray-based technology to a multiplex qPCR-based technology using the same set of marker genes as the advanced fragment analysis (AFA). Compared to microarray assays, the new assay system makes the convenient, low cost and individualized subtype diagnosis of pediatric ALL a reality and is clinically applicable, particularly in developing countries.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: