Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

CB1R-stabilized NLRP3 inflammasome drives antipsychotics cardiotoxicity.

  • Liliang Li‎ et al.
  • Signal transduction and targeted therapy‎
  • 2022‎

Long-term use of antipsychotics is a common cause of myocardial injury and even sudden cardiac deaths that often lead to drug withdrawn or discontinuation. Mechanisms underlying antipsychotics cardiotoxicity remain largely unknown. Herein we performed RNA sequencing and found that NLRP3 inflammasome-mediated pyroptosis contributed predominantly to multiple antipsychotics cardiotoxicity. Pyroptosis-based small-molecule compound screen identified cannabinoid receptor 1 (CB1R) as an upstream regulator of the NLRP3 inflammasome. Mechanistically, antipsychotics competitively bond to the CB1R and led to CB1R translocation to the cytoplasm, where CB1R directly interacted with NLRP3 inflammasome via amino acid residues 177-209, rendering stabilization of the inflammasome. Knockout of Cb1r significantly alleviated antipsychotic-induced cardiomyocyte pyroptosis and cardiotoxicity. Multi-organ-based investigation revealed no additional toxicity of newer CB1R antagonists. In authentic human cases, the expression of CB1R and NLRP3 inflammasome positively correlated with antipsychotics-induced cardiotoxicity. These results suggest that CB1R is a potent regulator of the NLRP3 inflammsome-mediated pyroptosis and small-molecule inhibitors targeting the CB1R/NLRP3 signaling represent attractive approaches to rescue cardiac side effects of antipsychotics.


Asialoglycoprotein receptor 1 promotes SARS-CoV-2 infection of human normal hepatocytes.

  • Xinyi Yang‎ et al.
  • Signal transduction and targeted therapy‎
  • 2024‎

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes multi-organ damage, which includes hepatic dysfunction, as observed in over 50% of COVID-19 patients. Angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (ACE2) is the primary receptor for SARS-CoV-2 entry into host cells, and studies have shown the presence of intracellular virus particles in human hepatocytes that express ACE2, but at extremely low levels. Consequently, we asked if hepatocytes might express receptors other than ACE2 capable of promoting the entry of SARS-CoV-2 into cells. To address this question, we performed a genome-wide CRISPR-Cas9 activation library screening and found that Asialoglycoprotein receptor 1 (ASGR1) promoted SARS-CoV-2 pseudovirus infection of HeLa cells. In Huh-7 cells, simultaneous knockout of ACE2 and ASGR1 prevented SARS-CoV-2 pseudovirus infection. In the immortalized THLE-2 hepatocyte cell line and primary hepatic parenchymal cells, both of which barely expressed ACE2, SARS-CoV-2 pseudovirus could successfully establish an infection. However, after treatment with ASGR1 antibody or siRNA targeting ASGR1, the infection rate significantly dropped, suggesting that SARS-CoV-2 pseudovirus infects hepatic parenchymal cells mainly through an ASGR1-dependent mechanism. We confirmed that ASGR1 could interact with Spike protein, which depends on receptor binding domain (RBD) and N-terminal domain (NTD). Finally, we also used Immunohistochemistry and electron microscopy to verify that SARS-CoV-2 could infect primary hepatic parenchymal cells. After inhibiting ASGR1 in primary hepatic parenchymal cells by siRNA, the infection efficiency of the live virus decreased significantly. Collectively, these findings indicate that ASGR1 is a candidate receptor for SARS-CoV-2 that promotes infection of hepatic parenchymal cells.


Gefitinib and fostamatinib target EGFR and SYK to attenuate silicosis: a multi-omics study with drug exploration.

  • Mingyao Wang‎ et al.
  • Signal transduction and targeted therapy‎
  • 2022‎

Silicosis is the most prevalent and fatal occupational disease with no effective therapeutics, and currently used drugs cannot reverse the disease progress. Worse still, there are still challenges to be addressed to fully decipher the intricated pathogenesis. Thus, specifying the essential mechanisms and targets in silicosis progression then exploring anti-silicosis pharmacuticals are desperately needed. In this work, multi-omics atlas was constructed to depict the pivotal abnormalities of silicosis and develop targeted agents. By utilizing an unbiased and time-resolved analysis of the transcriptome, proteome and phosphoproteome of a silicosis mouse model, we have verified the significant differences in transcript, protein, kinase activity and signaling pathway level during silicosis progression, in which the importance of essential biological processes such as macrophage activation, chemotaxis, immune cell recruitment and chronic inflammation were emphasized. Notably, the phosphorylation of EGFR (p-EGFR) and SYK (p-SYK) were identified as potential therapeutic targets in the progression of silicosis. To inhibit and validate these targets, we tested fostamatinib (targeting SYK) and Gefitinib (targeting EGFR), and both drugs effectively ameliorated pulmonary dysfunction and inhibited the progression of inflammation and fibrosis. Overall, our drug discovery with multi-omics approach provides novel and viable therapeutic strategies for the treatment of silicosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: