Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Sharpin contributes to TNFα dependent NFκB activation and anti-apoptotic signalling in hepatocytes.

  • Sabrina Sieber‎ et al.
  • PloS one‎
  • 2012‎

TNFα stimulates both pro- and anti-apoptotic signalling in hepatocytes. Anti-apoptotic signalling depends on a cascade of ubiquitylation steps leading to NFκB activation. Using Sharpin-deficient mice, we show that the ubiquitin binding protein Sharpin interacts with Hoip, an E3 ligase which generates linear ubiquitin chains. Sharpin-deficiency sensitized hepatocytes to induction of apoptosis by TNFα even in the absence of transcriptional inhibition. TNFα induced activation of NFκB was strongly reduced in hepatocytes from Sharpin-deficient mice, due to reduced and delayed phosphorylation and degradation of IκBα. Injection of TNFα-inducing lipopolysaccharides led to strongly exacerbated liver damage and premature death in Sharpin-deficient mice. Our findings point to an essential role of Sharpin in linear ubiquitin chain formation, NFκB activation, and protection of the liver against inflammatory damaging signals.


Regional and subcellular distribution of the receptor-targeting protein PIST in the rat central nervous system.

  • Annie Chen‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

Protein interacting specifically with Tc10, PIST, is a Golgi-associated sorting protein involved in regulating cell-surface targeting of plasma membrane receptors. The present study provides the first comprehensive description of PIST distribution in the mammalian central nervous system and of its subcellular localization by immunocytochemistry. PIST is distributed widely throughout the neuraxis, predominantly associated with neuronal cell bodies and dendrites. In hippocampal neurons, in vitro and in situ, PIST displayed a patchy subcellular distribution in an area surrounding the nucleus and extending into one of the major dendrites. By colocalization with the trans-Golgi marker TGN38, we were able to show that PIST is associated largely but not exclusively with the trans-Golgi network in central neurons. High or moderate to high levels of PIST-like immunoreactivity were found in cortical areas, in particular in layer V of the neocortex. The motor cortex was most strongly labeled. Also, the piriform and insular cortices displayed strong PIST labeling. In the hippocampus, CA2 but not CA1 or CA3 pyramidal cells displayed strong PIST-labeling, extending into their apical dendrites. In the thalamus, ventrolateral and laterodorsal nuclei were most strongly stained, whereas in the hypothalamus the supraoptic nucleus stood out with strong immunoreactivity. Strikingly, in the brainstem all cranial nerve motor nuclei were PIST-positive at varying levels, which is in keeping with the prominent expression of PIST in forebrain motor areas. This selective distribution of PIST suggests that the protein serves distinctive roles in specific neuronal populations, establishing functionally distinct zones, for instance, in the hippocampus.


Truncating mutations in SHANK3 associated with global developmental delay interfere with nuclear β-catenin signaling.

  • Fatemeh Hassani Nia‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

Mutations in SHANK3, coding for a large scaffold protein of excitatory synapses in the CNS, are associated with neurodevelopmental disorders including autism spectrum disorders and intellectual disability (ID). Several cases have been identified in which the mutation leads to truncation of the protein, eliminating C-terminal sequences required for post-synaptic targeting of the protein. We identify here a patient with a truncating mutation in SHANK3, affected by severe global developmental delay and intellectual disability. By analyzing the subcellular distribution of this truncated form of Shank3, we identified a nuclear localization signal (NLS) in the N-terminal part of the protein which is responsible for targeting Shank3 fragments to the nucleus. To determine the relevance of Shank3 for nuclear signaling, we analyze how it affects signaling by β-catenin, a component of the Wnt pathway. We show that full length as well as truncated variants of Shank3 interact with β-catenin via the PDZ domain of Shank3, and the armadillo repeats of β-catenin. As a result of this interaction, truncated forms of Shank3 and β-catenin strictly co-localize in small intra-nuclear bodies both in 293T cells and in rat hippocampal neurons. On a functional level, the sequestration of both proteins in these nuclear bodies is associated with a strongly repressed transcriptional activation by β-catenin owing to interaction with the truncated Shank3 fragment found in patients. Our data suggest that truncating mutations in SHANK3 may not only lead to a reduction in Shank3 protein available at postsynaptic sites but also negatively affect the Wnt signaling pathway.


Functional analysis of CASK transcript variants expressed in human brain.

  • Debora Tibbe‎ et al.
  • PloS one‎
  • 2021‎

The calcium-/calmodulin dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinases (MAGUK) family of proteins. It fulfils several different cellular functions, ranging from acting as a scaffold protein to transcription control, as well as regulation of receptor sorting. CASK functions depend on the interaction with a variety of partners, for example neurexin, liprin-α, Tbr1 and SAP97. So far, it is uncertain how these seemingly unrelated interactions and resulting functions of CASK are regulated. Here, we show that alternative splicing of CASK can guide the binding affinity of CASK isoforms to distinct interaction partners. We report seven different variants of CASK expressed in the fetal human brain. Four out of these variants are not present in the NCBI GenBank database as known human variants. Functional analyses showed that alternative splicing affected the affinities of CASK variants for several of the tested interaction partners. Thus, we observed a clear correlation of the presence of one splice insert with poor binding of CASK to SAP97, supported by molecular modelling. The alternative splicing and distinct properties of CASK variants in terms of protein-protein interaction should be taken into consideration for future studies.


The Golgi-Associated PDZ Domain Protein Gopc/PIST Is Required for Synaptic Targeting of mGluR5.

  • Malte Klüssendorf‎ et al.
  • Molecular neurobiology‎
  • 2021‎

In neuronal cells, many membrane receptors interact via their intracellular, C-terminal tails with PSD-95/discs large/ZO-1 (PDZ) domain proteins. Some PDZ proteins act as scaffold proteins. In addition, there are a few PDZ proteins such as Gopc which bind to receptors during intracellular transport. Gopc is localized at the trans-Golgi network (TGN) and binds to a variety of receptors, many of which are eventually targeted to postsynaptic sites. We have analyzed the role of Gopc by knockdown in primary cultured neurons and by generating a conditional Gopc knockout (KO) mouse line. In neurons, targeting of neuroligin 1 (Nlgn1) and metabotropic glutamate receptor 5 (mGlu5) to the plasma membrane was impaired upon depletion of Gopc, whereas NMDA receptors were not affected. In the hippocampus and cortex of Gopc KO animals, expression levels of Gopc-associated receptors were not altered, while their subcellular localization was disturbed. The targeting of mGlu5 to the postsynaptic density was reduced, coinciding with alterations in mGluR-dependent synaptic plasticity and deficiencies in a contextual fear conditioning paradigm. Our data imply Gopc in the correct subcellular sorting of its associated mGlu5 receptor in vivo.


Autism-associated SHANK3 missense point mutations impact conformational fluctuations and protein turnover at synapses.

  • Michael Bucher‎ et al.
  • eLife‎
  • 2021‎

Members of the SH3- and ankyrin repeat (SHANK) protein family are considered as master scaffolds of the postsynaptic density of glutamatergic synapses. Several missense mutations within the canonical SHANK3 isoform have been proposed as causative for the development of autism spectrum disorders (ASDs). However, there is a surprising paucity of data linking missense mutation-induced changes in protein structure and dynamics to the occurrence of ASD-related synaptic phenotypes. In this proof-of-principle study, we focus on two ASD-associated point mutations, both located within the same domain of SHANK3 and demonstrate that both mutant proteins indeed show distinct changes in secondary and tertiary structure as well as higher conformational fluctuations. Local and distal structural disturbances result in altered synaptic targeting and changes of protein turnover at synaptic sites in rat primary hippocampal neurons.


Mutations affecting the N-terminal domains of SHANK3 point to different pathomechanisms in neurodevelopmental disorders.

  • Daniel Woike‎ et al.
  • Scientific reports‎
  • 2022‎

Shank proteins are major scaffolds of the postsynaptic density of excitatory synapses. Mutations in SHANK genes are associated with autism and intellectual disability. The effects of missense mutations on Shank3 function, and therefore the pathomechanisms are unclear. Several missense mutations in SHANK3 affect the N-terminal region, consisting of the Shank/ProSAP N-terminal (SPN) domain and a set of Ankyrin (Ank) repeats. Here we identify a novel SHANK3 missense mutation (p.L270M) in the Ankyrin repeats in patients with an ADHD-like phenotype. We functionally analysed this and a series of other mutations, using biochemical and biophysical techniques. We observe two major effects: (1) a loss of binding to δ-catenin (e.g. in the p.L270M variant), and (2) interference with the intramolecular interaction between N-terminal SPN domain and the Ank repeats. This also interferes with binding to the α-subunit of the calcium-/calmodulin dependent kinase II (αCaMKII), and appears to be associated with a more severe neurodevelopmental pathology.


The golgi-associated PDZ domain protein PIST/GOPC stabilizes the β1-adrenergic receptor in intracellular compartments after internalization.

  • Judith Koliwer‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

Many G-protein-coupled receptors carry C-terminal ligand motifs for PSD-95/discs large/ZO-1 (PDZ) domains; via interaction with PDZ domain-containing scaffold proteins, this allows for integration of receptors into signaling complexes. However, the presence of PDZ domain proteins attached to intracellular membranes suggests that PDZ-type interactions may also contribute to subcellular sorting of receptors. The protein interacting specifically with Tc10 (PIST; also known as GOPC) is a trans-Golgi-associated protein that interacts through its single PDZ domain with a variety of cell surface receptors. Here we show that PIST controls trafficking of the interacting β1-adrenergic receptor both in the anterograde, biosynthetic pathway and during postendocytic recycling. Overexpression and knockdown experiments show that PIST leads to retention of the receptor in the trans-Golgi network (TGN), to the effect that overexpressed PIST reduces activation of the MAPK pathway by β1-adrenergic receptor (β1AR) agonists. Receptors can be released from retention in the TGN by coexpression of the plasma membrane-associated scaffold PSD-95, which allows for transport of receptors to the plasma membrane. Stimulation of β1 receptors and activation of the cAMP pathway lead to relocation of PIST from the TGN to an endosome-like compartment. Here PIST colocalizes with SNX1 and the internalized β1AR and protects endocytosed receptors from lysosomal degradation. In agreement, β1AR levels are decreased in hippocampi of PIST-deficient mice. Our data suggest that PIST contributes to the fine-tuning of β1AR sorting both during biosynthetic and postendocytic trafficking.


Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF).

  • Elisabetta Menna‎ et al.
  • PLoS biology‎
  • 2009‎

The regulation of filopodia plays a crucial role during neuronal development and synaptogenesis. Axonal filopodia, which are known to originate presynaptic specializations, are regulated in response to neurotrophic factors. The structural components of filopodia are actin filaments, whose dynamics and organization are controlled by ensembles of actin-binding proteins. How neurotrophic factors regulate these latter proteins remains, however, poorly defined. Here, using a combination of mouse genetic, biochemical, and cell biological assays, we show that genetic removal of Eps8, an actin-binding and regulatory protein enriched in the growth cones and developing processes of neurons, significantly augments the number and density of vasodilator-stimulated phosphoprotein (VASP)-dependent axonal filopodia. The reintroduction of Eps8 wild type (WT), but not an Eps8 capping-defective mutant, into primary hippocampal neurons restored axonal filopodia to WT levels. We further show that the actin barbed-end capping activity of Eps8 is inhibited by brain-derived neurotrophic factor (BDNF) treatment through MAPK-dependent phosphorylation of Eps8 residues S624 and T628. Additionally, an Eps8 mutant, impaired in the MAPK target sites (S624A/T628A), displays increased association to actin-rich structures, is resistant to BDNF-mediated release from microfilaments, and inhibits BDNF-induced filopodia. The opposite is observed for a phosphomimetic Eps8 (S624E/T628E) mutant. Thus, collectively, our data identify Eps8 as a critical capping protein in the regulation of axonal filopodia and delineate a molecular pathway by which BDNF, through MAPK-dependent phosphorylation of Eps8, stimulates axonal filopodia formation, a process with crucial impacts on neuronal development and synapse formation.


Targeting of δ-catenin to postsynaptic sites through interaction with the Shank3 N-terminus.

  • Fatemeh Hassani Nia‎ et al.
  • Molecular autism‎
  • 2020‎

Neurodevelopmental disorders such as autism spectrum disorder (ASD) may be caused by alterations in genes encoding proteins that are involved in synapse formation and function. This includes scaffold proteins such as Shank3, and synaptic adhesion proteins such as Neurexins or Neuroligins. An important question is whether the products of individual risk genes cooperate functionally (exemplified in the interaction of Neurexin with Neuroligin isoforms). This might suggest a common pathway in pathogenesis. For the SHANK3 gene, heterozygous loss of function, as well as missense mutations have been observed in ASD cases. Several missense mutations affect the N-terminal part of Shank3 which contains the highly conserved Shank/ProSAP N-terminal (SPN) and Ankyrin repeat (Ank) domains. The role of these domains and the relevance of these mutations for synaptic function of Shank3 are widely unknown.


Germline AGO2 mutations impair RNA interference and human neurological development.

  • Davor Lessel‎ et al.
  • Nature communications‎
  • 2020‎

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.


Structural deficits in key domains of Shank2 lead to alterations in postsynaptic nanoclusters and to a neurodevelopmental disorder in humans.

  • Fatemeh Hassani Nia‎ et al.
  • Molecular psychiatry‎
  • 2022‎

Postsynaptic scaffold proteins such as Shank, PSD-95, Homer and SAPAP/GKAP family members establish the postsynaptic density of glutamatergic synapses through a dense network of molecular interactions. Mutations in SHANK genes are associated with neurodevelopmental disorders including autism and intellectual disability. However, no SHANK missense mutations have been described which interfere with the key functions of Shank proteins believed to be central for synapse formation, such as GKAP binding via the PDZ domain, or Zn2+-dependent multimerization of the SAM domain. We identify two individuals with a neurodevelopmental disorder carrying de novo missense mutations in SHANK2. The p.G643R variant distorts the binding pocket for GKAP in the Shank2 PDZ domain and prevents interaction with Thr(-2) in the canonical PDZ ligand motif of GKAP. The p.L1800W variant severely delays the kinetics of Zn2+-dependent polymerization of the Shank2-SAM domain. Structural analysis shows that Trp1800 dislodges one histidine crucial for Zn2+ binding. The resulting conformational changes block the stacking of helical polymers of SAM domains into sheets through side-by-side contacts, which is a hallmark of Shank proteins, thereby disrupting the highly cooperative assembly process induced by Zn2+. Both variants reduce the postsynaptic targeting of Shank2 in primary cultured neurons and alter glutamatergic synaptic transmission. Super-resolution microscopy shows that both mutants interfere with the formation of postsynaptic nanoclusters. Our data indicate that both the PDZ- and the SAM-mediated interactions of Shank2 contribute to the compaction of postsynaptic protein complexes into nanoclusters, and that deficiencies in this process interfere with normal brain development in humans.


Subcellular sorting of the G-protein coupled mouse somatostatin receptor 5 by a network of PDZ-domain containing proteins.

  • Carola Bauch‎ et al.
  • PloS one‎
  • 2014‎

PSD-95/discs large/ZO-1 (PDZ) domain proteins integrate many G-protein coupled receptors (GPCRs) into membrane associated signalling complexes. Additional PDZ proteins are involved in intracellular receptor trafficking. We show that three PDZ proteins (SNX27, PIST and NHERF1/3) regulate the mouse somatostatin receptor subtype 5 (SSTR5). Whereas the PDZ ligand motif of SSTR5 is not necessary for plasma membrane targeting or internalization, it protects the SSTR5 from postendocytic degradation. Under conditions of lysosomal inhibition, recycling of the SSTR5 to the plasma membrane does not depend on the PDZ ligand. However, recycling of the wild type receptor carrying the PDZ binding motif depends on SNX27 which interacts and colocalizes with the receptor in endosomal compartments. PIST, implicated in lysosomal targeting of some membrane proteins, does not lead to degradation of the SSTR5. Instead, overexpressed PIST retains the SSTR5 at the Golgi. NHERF family members release SSTR5 from retention by PIST, allowing for plasma membrane insertion. Our data suggest that PDZ proteins act sequentially on the GPCR at different stages of its subcellular trafficking.


Variant-specific effects define the phenotypic spectrum of HNRNPH2-associated neurodevelopmental disorders in males.

  • Hans-Jürgen Kreienkamp‎ et al.
  • Human genetics‎
  • 2022‎

Bain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype-phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.


Regulation of Liprin-α phase separation by CASK is disrupted by a mutation in its CaM kinase domain.

  • Debora Tibbe‎ et al.
  • Life science alliance‎
  • 2022‎

CASK is a unique membrane-associated guanylate kinase (MAGUK) because of its Ca2+/calmodulin-dependent kinase (CaMK) domain. We describe four male patients with a severe neurodevelopmental disorder with microcephaly carrying missense variants affecting the CaMK domain. One boy who carried the p.E115K variant and died at an early age showed pontocerebellar hypoplasia (PCH) in addition to microcephaly, thus exhibiting the classical MICPCH phenotype observed in individuals with CASK loss-of-function variants. All four variants selectively weaken the interaction of CASK with Liprin-α2, a component of the presynaptic active zone. Liprin-α proteins form spherical phase-separated condensates, which we observe here in Liprin-α2 overexpressing HEK293T cells. Large Liprin-α2 clusters were also observed in transfected primary-cultured neurons. Cluster formation of Liprin-α2 is reversed in the presence of CASK; this is associated with altered phosphorylation of Liprin-α2. The p.E115K variant fails to interfere with condensate formation. As the individual carrying this variant had the severe MICPCH disorder, we suggest that regulation of Liprin-α2-mediated phase condensate formation is a new functional feature of CASK which must be maintained to prevent PCH.


The Shank/ProSAP N-Terminal (SPN) Domain of Shank3 Regulates Targeting to Postsynaptic Sites and Postsynaptic Signaling.

  • Daniel Woike‎ et al.
  • Molecular neurobiology‎
  • 2023‎

Members of the Shank family of postsynaptic scaffold proteins (Shank1-3) link neurotransmitter receptors to the actin cytoskeleton in dendritic spines through establishing numerous interactions within the postsynaptic density (PSD) of excitatory synapses. Large Shank isoforms carry at their N-termini a highly conserved domain termed the Shank/ProSAP N-terminal (SPN) domain, followed by a set of Ankyrin repeats. Both domains are involved in an intramolecular interaction which is believed to regulate accessibility for additional interaction partners, such as Ras family G-proteins, αCaMKII, and cytoskeletal proteins. Here, we analyze the functional relevance of the SPN-Ank module; we show that binding of active Ras or Rap1a to the SPN domain can differentially regulate the localization of Shank3 in dendrites. In Shank1 and Shank3, the linker between the SPN and Ank domains binds to inactive αCaMKII. Due to this interaction, both Shank1 and Shank3 exert a negative effect on αCaMKII activity at postsynaptic sites in mice in vivo. The relevance of the SPN-Ank intramolecular interaction was further analyzed in primary cultured neurons; here, we observed that in the context of full-length Shank3, a closed conformation of the SPN-Ank tandem is necessary for proper clustering of Shank3 on the head of dendritic spines. Shank3 variants carrying Ank repeats which are not associated with the SPN domain lead to the atypical formation of postsynaptic clusters on dendritic shafts, at the expense of clusters in spine-like protrusions. Our data show that the SPN-Ank tandem motif contributes to the regulation of postsynaptic signaling and is also necessary for proper targeting of Shank3 to postsynaptic sites. Our data also suggest how missense variants found in autistic patients which alter SPN and Ank domains affect the synaptic function of Shank3.


Somatostatin inhibits cell migration and reduces cell counts of human keratinocytes and delays epidermal wound healing in an ex vivo wound model.

  • Matthias Vockel‎ et al.
  • PloS one‎
  • 2011‎

The peptide hormone somatostatin (SST) and its five G protein-coupled receptors (SSTR1-5) were described to be present in the skin, but their cutaneous function(s) and skin-specific signalling mechanisms are widely unknown. By using receptor specific agonists we show here that the SSTRs expressed in keratinocytes are functionally coupled to the inhibition of adenylate cyclase. In addition, treatment with SSTR4 and SSTR5/1 specific agonists significantly influences the MAP kinase signalling pathway. As epidermal hormone receptors in general are known to regulate re-epithelialization following skin injury, we investigated the effect of SST on cell counts and migration of human keratinocytes. Our results demonstrate a significant inhibition of cell migration and reduction of cell counts by SST. We do not observe an effect on apoptosis and necrosis. Analysis of signalling pathways showed that somatostatin inhibits cell migration independent of its effect on cAMP. Migrating keratinocytes treated with SST show altered cytoskeleton dynamics with delayed lamellipodia formation. Furthermore, the activity of the small GTPase Rac1 is diminished, providing evidence for the control of the actin cytoskeleton by somatostatin receptors in keratinocytes. While activation of all receptors leads to redundant effects on cell migration, only treatment with a SSTR5/1 specific agonist resulted in decreased cell counts. In accordance with reduced cell counts and impaired migration we observe delayed re-epithelialization in an ex vivo wound healing model. Consequently, our experiments suggest SST as a negative regulator of epidermal wound healing.


Somatostatin receptor 5 is palmitoylated by the interacting ZDHHC5 palmitoyltransferase.

  • Tarja Kokkola‎ et al.
  • FEBS letters‎
  • 2011‎

Many G-protein coupled receptors are palmitoylated in their C-terminal, intracellular regions. So far no enzymes responsible for this modification have been described. We identified an interaction of the membrane proximal helix 8 of somatostatin receptor 5 (SSTR5) with the N-terminal region of the putative palmitoyltransferase ZDHHC5 using the Ras recruitment interaction screening system. ZDHHC5 and SSTR5 are colocalized at the plasma membrane and can be efficiently coimmunoprecipitated from transfected cells. Coexpression of ZDHHC5 in HEK293 cells increased palmitoylation of SSTR5 whereas knock-down of endogenous ZDHHC5 by siRNAs decreased it. Our data identify the first palmitoyltransferase for a G-protein coupled receptor.


Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease.

  • Andreas Gal‎ et al.
  • American journal of human genetics‎
  • 2011‎

Posterior microphthalmos (MCOP) is a rare isolated developmental anomaly of the eye characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal-recessive form (arMCOP) of the disease. Based on published linkage data, we refined the position of the disease locus (MCOP6) in an interval of 250 kb in chromosome 2q37.1 in two large Faroese families. We detected three different mutations in PRSS56. Patients of the Faroese families were either homozygous for c.926G>C (p.Trp309Ser) or compound heterozygous for c.926G>C and c.526C>G (p.Arg176Gly), whereas a homozygous 1 bp duplication (c.1066dupC) was identified in five patients with arMCOP from a consanguineous Tunisian family. In one patient with MCOP from the Faroe Islands and in another one from Turkey, no PRSS56 mutation was detected, suggesting nonallelic heterogeneity of the trait. Using RT-PCR, PRSS56 transcripts were detected in samples derived from the human adult retina, cornea, sclera, and optic nerve. The expression of the mouse ortholog could be first detected in the eye at E17 and was maintained into adulthood. The predicted PRSS56 protein is a 603 amino acid long secreted trypsin-like serine peptidase. The c.1066dupC is likely to result in a functional null allele, whereas the two point mutations predict the replacement of evolutionary conserved and functionally important residues. Molecular modeling of the p.Trp309Ser mutant suggests that both the affinity and reactivity of the enzyme toward in vivo protein substrates are likely to be substantially reduced.


De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder.

  • Davor Lessel‎ et al.
  • American journal of human genetics‎
  • 2017‎

DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation. All amino acid changes are located within highly conserved helicase motifs and were found to either impair ATPase activity or RNA recognition in different in vitro assays. Moreover, protein variants exhibit an increased propensity to trigger stress granule (SG) formation resulting in global translation inhibition. Thus, our findings highlight the prominent role of translation control in development and function of the central nervous system and also provide molecular insight into how DHX30 dysfunction might cause a neurodevelopmental disorder.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: