Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 104 papers

CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder.

  • Saskia B Wortmann‎ et al.
  • American journal of human genetics‎
  • 2015‎

We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leukemia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 individuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAA+ protein family. To evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure ATPase activity. Suppression of clpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, mutations in CLPB define a syndrome with intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria.


Variants in PUS7 Cause Intellectual Disability with Speech Delay, Microcephaly, Short Stature, and Aggressive Behavior.

  • Arjan P M de Brouwer‎ et al.
  • American journal of human genetics‎
  • 2018‎

We describe six persons from three families with three homozygous protein truncating variants in PUS7: c.89_90del (p.Thr30Lysfs∗20), c.1348C>T (p.Arg450∗), and a deletion of the penultimate exon 15. All these individuals have intellectual disability with speech delay, short stature, microcephaly, and aggressive behavior. PUS7 encodes the RNA-independent pseudouridylate synthase 7. Pseudouridylation is the most abundant post-transcriptional modification in RNA, which is primarily thought to stabilize secondary structures of RNA. We show that the disease-related variants lead to abolishment of PUS7 activity on both tRNA and mRNA substrates. Moreover, pus7 knockout in Drosophila melanogaster results in a number of behavioral defects, including increased activity, disorientation, and aggressiveness supporting that neurological defects are caused by PUS7 variants. Our findings demonstrate that RNA pseudouridylation by PUS7 is essential for proper neuronal development and function.


Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia.

  • Janneke H M Schuurs-Hoeijmakers‎ et al.
  • American journal of human genetics‎
  • 2012‎

We report on four families affected by a clinical presentation of complex hereditary spastic paraplegia (HSP) due to recessive mutations in DDHD2, encoding one of the three mammalian intracellular phospholipases A(1) (iPLA(1)). The core phenotype of this HSP syndrome consists of very early-onset (<2 years) spastic paraplegia, intellectual disability, and a specific pattern of brain abnormalities on cerebral imaging. An essential role for DDHD2 in the human CNS, and perhaps more specifically in synaptic functioning, is supported by a reduced number of active zones at synaptic terminals in Ddhd-knockdown Drosophila models. All identified mutations affect the protein's DDHD domain, which is vital for its phospholipase activity. In line with the function of DDHD2 in lipid metabolism and its role in the CNS, an abnormal lipid peak indicating accumulation of lipids was detected with cerebral magnetic resonance spectroscopy, which provides an applicable diagnostic biomarker that can distinguish the DDHD2 phenotype from other complex HSP phenotypes. We show that mutations in DDHD2 cause a specific complex HSP subtype (SPG54), thereby linking a member of the PLA(1) family to human neurologic disease.


Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity.

  • Tulio Guadalupe‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2015‎

The genetic determinants of cerebral asymmetries are unknown. Sex differences in asymmetry of the planum temporale (PT), that overlaps Wernicke's classical language area, have been inconsistently reported. Meta-analysis of previous studies has suggested that publication bias established this sex difference in the literature. Using probabilistic definitions of cortical regions we screened over the cerebral cortex for sexual dimorphisms of asymmetry in 2337 healthy subjects, and found the PT to show the strongest sex-linked asymmetry of all regions, which was supported by two further datasets, and also by analysis with the FreeSurfer package that performs automated parcellation of cerebral cortical regions. We performed a genome-wide association scan (GWAS) meta-analysis of PT asymmetry in a pooled sample of 3095 subjects, followed by a candidate-driven approach which measured a significant enrichment of association in genes of the 'steroid hormone receptor activity' and 'steroid metabolic process' pathways. Variants in the genes and pathways identified may affect the role of the PT in language cognition.


A complex microcephaly syndrome in a Pakistani family associated with a novel missense mutation in RBBP8 and a heterozygous deletion in NRXN1.

  • Zehra Agha‎ et al.
  • Gene‎
  • 2014‎

We report on a consanguineous Pakistani family with a severe congenital microcephaly syndrome resembling the Seckel syndrome and Jawad syndrome. The affected individuals in this family were born to consanguineous parents of whom the mother presented with mild intellectual disability (ID), epilepsy and diabetes mellitus. The two living affected brothers presented with microcephaly, white matter disease of the brain, hyponychia, dysmorphic facial features with synophrys, epilepsy, diabetes mellitus and ID. Genotyping with a 250K SNP array in both affected brothers revealed an 18 MB homozygous region on chromosome 18 p11.21-q12.1 encompassing the SCKL2 locus of the Seckel and Jawad syndromes. Sequencing of the RBBP8 gene, underlying the Seckel and Jawad syndromes, identified the novel mutation c.919A>G, p.Arg307Gly, segregating in a recessive manner in the family. In addition, in the two affected brothers and their mother we have also found a heterozygous 607kb deletion, encompassing exons 13-19 of NRXN1. Bidirectional sequencing of the coding exons of NRXN1 did not reveal any other mutation on the other allele. It thus appears that the phenotype of the mildly affected mother can be explained by the NRXN1 deletion, whereas the more severe and complex microcephalic phenotype of the two affected brothers is due to the simultaneous deletion in NRXN1 and the homozygous missense mutation affecting RBBP8.


Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems.

  • Anneke T Vulto-van Silfhout‎ et al.
  • American journal of human genetics‎
  • 2014‎

Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1.


Euchromatin histone methyltransferase 1 regulates cortical neuronal network development.

  • Marijn Bart Martens‎ et al.
  • Scientific reports‎
  • 2016‎

Heterozygous mutations or deletions in the human Euchromatin histone methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a neurodevelopmental disorder that is characterized by autistic-like features and severe intellectual disability (ID). Neurodevelopmental disorders including ID and autism may be related to deficits in activity-dependent wiring of brain circuits during development. Although Kleefstra syndrome has been associated with dendritic and synaptic defects in mice and Drosophila, little is known about the role of EHMT1 in the development of cortical neuronal networks. Here we used micro-electrode arrays and whole-cell patch-clamp recordings to investigate the impact of EHMT1 deficiency at the network and single cell level. We show that EHMT1 deficiency impaired neural network activity during the transition from uncorrelated background action potential firing to synchronized network bursting. Spontaneous bursting and excitatory synaptic currents were transiently reduced, whereas miniature excitatory postsynaptic currents were not affected. Finally, we show that loss of function of EHMT1 ultimately resulted in less regular network bursting patterns later in development. These data suggest that the developmental impairments observed in EHMT1-deficient networks may result in a temporal misalignment between activity-dependent developmental processes thereby contributing to the pathophysiology of Kleefstra syndrome.


Drosophila Courtship Conditioning As a Measure of Learning and Memory.

  • Tom S Koemans‎ et al.
  • Journal of visualized experiments : JoVE‎
  • 2017‎

Many insights into the molecular mechanisms underlying learning and memory have been elucidated through the use of simple behavioral assays in model organisms such as the fruit fly, Drosophila melanogaster. Drosophila is useful for understanding the basic neurobiology underlying cognitive deficits resulting from mutations in genes associated with human cognitive disorders, such as intellectual disability (ID) and autism. This work describes a methodology for testing learning and memory using a classic paradigm in Drosophila known as courtship conditioning. Male flies court females using a distinct pattern of easily recognizable behaviors. Premated females are not receptive to mating and will reject the male's copulation attempts. In response to this rejection, male flies reduce their courtship behavior. This learned reduction in courtship behavior is measured over time, serving as an indicator of learning and memory. The basic numerical output of this assay is the courtship index (CI), which is defined as the percentage of time that a male spends courting during a 10 min interval. The learning index (LI) is the relative reduction of CI in flies that have been exposed to a premated female compared to naïve flies with no previous social encounters. For the statistical comparison of LIs between genotypes, a randomization test with bootstrapping is used. To illustrate how the assay can be used to address the role of a gene relating to learning and memory, the pan-neuronal knockdown of Dihydroxyacetone phosphate acyltransferase (Dhap-at) was characterized here. The human ortholog of Dhap-at, glyceronephosphate O-acyltransferase (GNPT), is involved in rhizomelic chondrodysplasia punctata type 2, an autosomal-recessive syndrome characterized by severe ID. Using the courtship conditioning assay, it was determined that Dhap-at is required for long-term memory, but not for short-term memory. This result serves as a basis for further investigation of the underlying molecular mechanisms.


Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan.

  • Keren J Carss‎ et al.
  • American journal of human genetics‎
  • 2013‎

Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.


Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability.

  • Tjitske Kleefstra‎ et al.
  • American journal of human genetics‎
  • 2012‎

Intellectual disability (ID) disorders are genetically and phenotypically highly heterogeneous and present a major challenge in clinical genetics and medicine. Although many genes involved in ID have been identified, the etiology is unknown in most affected individuals. Moreover, the function of most genes associated with ID remains poorly characterized. Evidence is accumulating that the control of gene transcription through epigenetic modification of chromatin structure in neurons has an important role in cognitive processes and in the etiology of ID. However, our understanding of the key molecular players and mechanisms in this process is highly fragmentary. Here, we identify a chromatin-modification module that underlies a recognizable form of ID, the Kleefstra syndrome phenotypic spectrum (KSS). In a cohort of KSS individuals without mutations in EHMT1 (the only gene known to be disrupted in KSS until now), we identified de novo mutations in four genes, MBD5, MLL3, SMARCB1, and NR1I3, all of which encode epigenetic regulators. Using Drosophila, we demonstrate that MBD5, MLL3, and NR1I3 cooperate with EHMT1, whereas SMARCB1 is known to directly interact with MLL3. We propose a highly conserved epigenetic network that underlies cognition in health and disease. This network should allow the design of strategies to treat the growing group of ID pathologies that are caused by epigenetic defects.


Identifying new candidate genes for hereditary facial paresis on chromosome 3q21-q22 by RNA in situ hybridization in mouse.

  • Bert van der Zwaag‎ et al.
  • Genomics‎
  • 2005‎

Hereditary congenital facial paresis (HCFP) belongs to the family of congenital cranial dysinnervation disorders and is characterized by an isolated dysfunction of the facial nerve (nVII). While genetic defects have been identified for several members of this disease family, genes underlying congenital facial paresis and Möbius syndrome remain to be discovered. Here we focus on HCFP linked to chromosome 3q21-q22 and identify new candidate genes using expression analysis by means of RNA in situ hybridization during mouse embryogenesis. We selected 28 positional candidates and identified 17 genes with undetectable expression levels during mouse development, ubiquitous expression, or expression in tissues not affected in HCFP. Additionally, 7 genes were excluded by direct sequence or reverse transcription-PCR analysis. The remaining 4 genes (Klf15, Flj40083, Kiaa0779, and Podxl2) were found to be expressed at spatial and temporal positions during mouse development that correlate with HCFP regions in humans, defining these genes as primary candidates in HCFP.


Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure.

  • Martina Zivná‎ et al.
  • American journal of human genetics‎
  • 2009‎

Through linkage analysis and candidate gene sequencing, we identified three unrelated families with the autosomal-dominant inheritance of early onset anemia, hypouricosuric hyperuricemia, progressive kidney failure, and mutations resulting either in the deletion (p.Leu16del) or the amino acid exchange (p.Leu16Arg) of a single leucine residue in the signal sequence of renin. Both mutations decrease signal sequence hydrophobicity and are predicted by bioinformatic analyses to damage targeting and cotranslational translocation of preprorenin into the endoplasmic reticulum (ER). Transfection and in vitro studies confirmed that both mutations affect ER translocation and processing of nascent preprorenin, resulting either in reduced (p.Leu16del) or abolished (p.Leu16Arg) prorenin and renin biosynthesis and secretion. Expression of renin and other components of the renin-angiotensin system was decreased accordingly in kidney biopsy specimens from affected individuals. Cells stably expressing the p.Leu16del protein showed activated ER stress, unfolded protein response, and reduced growth rate. It is likely that expression of the mutant proteins has a dominant toxic effect gradually reducing the viability of renin-expressing cells. This alters the intrarenal renin-angiotensin system and the juxtaglomerular apparatus functionality and leads to nephron dropout and progressive kidney failure. Our findings provide insight into the functionality of renin-angiotensin system and stress the importance of renin analysis in families and individuals with early onset hyperuricemia, anemia, and progressive kidney failure.


Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome.

  • Tjitske Kleefstra‎ et al.
  • American journal of human genetics‎
  • 2006‎

A clinically recognizable 9q subtelomeric deletion syndrome has recently been established. Common features seen in these patients are severe mental retardation, hypotonia, brachycephaly, flat face with hypertelorism, synophrys, anteverted nares, cupid bow or tented upper lip, everted lower lip, prognathism, macroglossia, conotruncal heart defects, and behavioral problems. The minimal critical region responsible for this 9q subtelomeric deletion (9q-) syndrome has been estimated to be <1 Mb and comprises the euchromatin histone methyl transferase 1 gene (EHMT1). Previous studies suggested that haploinsufficiency for EHMT1 is causative for 9q subtelomeric deletion syndrome. We have performed a comprehensive mutation analysis of the EHMT1 gene in 23 patients with clinical presentations reminiscent of 9q subtelomeric deletion syndrome. This analysis revealed three additional microdeletions that comprise the EHMT1 gene, including one interstitial deletion that reduces the critical region for this syndrome. Most importantly, we identified two de novo mutations--a nonsense mutation and a frameshift mutation--in the EHMT1 gene in patients with a typical 9q- phenotype. These results establish that haploinsufficiency of EHMT1 is causative for 9q subtelomeric deletion syndrome.


Altered expression of circadian rhythm and extracellular matrix genes in the medial prefrontal cortex of a valproic acid rat model of autism.

  • Nikkie F M Olde Loohuis‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2017‎

Autism spectrum disorders (ASD) are a highly heterogeneous group of neurodevelopmental disorders caused by complex interplay between various genes and environmental factors during embryonic development. Changes at the molecular, cellular and neuroanatomical levels are especially evident in the medial prefrontal cortex (mPFC) of ASD patients and are particularly contributing to social impairments. In the present study we tested the hypothesis that altered neuronal development and plasticity, as seen in the mPFC of ASD individuals, may result from aberrant expression of functionally connected genes. Towards this end, we combined transcriptome sequencing and computational gene ontology analysis to identify the molecular networks impaired in the mPFC of a valproic acid (VPA) rat model of autism. This investigation identified two subsets of genes differentially expressed in the mPFC of VPA rats: one group of genes being functionally involved in the regulation of the circadian rhythm, while the second group encompasses a set of differentially expressed collagen genes acting within the extracellular matrix. Ultimately, our integrated transcriptome analysis identified a distinct subset of altered gene networks in the mPFC of VPA rats, contributing to our understanding of autism at the molecular level, thus providing novel insight into the genetic alterations associated with this neurodevelopmental disorder.


Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders.

  • Loredana Poeta‎ et al.
  • Human molecular genetics‎
  • 2019‎

A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.


Systemic cell therapy for muscular dystrophies : The ultimate transplantable muscle progenitor cell and current challenges for clinical efficacy.

  • C Rosanne M Ausems‎ et al.
  • Stem cell reviews and reports‎
  • 2021‎

The intrinsic regenerative capacity of skeletal muscle makes it an excellent target for cell therapy. However, the potential of muscle tissue to renew is typically exhausted and insufficient in muscular dystrophies (MDs), a large group of heterogeneous genetic disorders showing progressive loss of skeletal muscle fibers. Cell therapy for MDs has to rely on suppletion with donor cells with high myogenic regenerative capacity. Here, we provide an overview on stem cell lineages employed for strategies in MDs, with a focus on adult stem cells and progenitor cells resident in skeletal muscle. In the early days, the potential of myoblasts and satellite cells was explored, but after disappointing clinical results the field moved to other muscle progenitor cells, each with its own advantages and disadvantages. Most recently, mesoangioblasts and pericytes have been pursued for muscle cell therapy, leading to a handful of preclinical studies and a clinical trial. The current status of (pre)clinical work for the most common forms of MD illustrates the existing challenges and bottlenecks. Besides the intrinsic properties of transplantable cells, we discuss issues relating to cell expansion and cell viability after transplantation, optimal dosage, and route and timing of administration. Since MDs are genetic conditions, autologous cell therapy and gene therapy will need to go hand-in-hand, bringing in additional complications. Finally, we discuss determinants for optimization of future clinical trials for muscle cell therapy. Joined research efforts bring hope that effective therapies for MDs are on the horizon to fulfil the unmet clinical need in patients.


Imbalanced autophagy causes synaptic deficits in a human model for neurodevelopmental disorders.

  • Katrin Linda‎ et al.
  • Autophagy‎
  • 2022‎

Macroautophagy (hereafter referred to as autophagy) is a finely tuned process of programmed degradation and recycling of proteins and cellular components, which is crucial in neuronal function and synaptic integrity. Mounting evidence implicates chromatin remodeling in fine-tuning autophagy pathways. However, this epigenetic regulation is poorly understood in neurons. Here, we investigate the role in autophagy of KANSL1, a member of the nonspecific lethal complex, which acetylates histone H4 on lysine 16 (H4K16ac) to facilitate transcriptional activation. Loss-of-function of KANSL1 is strongly associated with the neurodevelopmental disorder Koolen-de Vries Syndrome (KdVS). Starting from KANSL1-deficient human induced-pluripotent stem cells, both from KdVS patients and genome-edited lines, we identified SOD1 (superoxide dismutase 1), an antioxidant enzyme, to be significantly decreased, leading to a subsequent increase in oxidative stress and autophagosome accumulation. In KANSL1-deficient neurons, autophagosome accumulation at excitatory synapses resulted in reduced synaptic density, reduced GRIA/AMPA receptor-mediated transmission and impaired neuronal network activity. Furthermore, we found that increased oxidative stress-mediated autophagosome accumulation leads to increased MTOR activation and decreased lysosome function, further preventing the clearing of autophagosomes. Finally, by pharmacologically reducing oxidative stress, we could rescue the aberrant autophagosome formation as well as synaptic and neuronal network activity in KANSL1-deficient neurons. Our findings thus point toward an important relation between oxidative stress-induced autophagy and synapse function, and demonstrate the importance of H4K16ac-mediated changes in chromatin structure to balance reactive oxygen species- and MTOR-dependent autophagy.Abbreviations: APO: apocynin; ATG: autophagy related; BAF: bafilomycin A1; BSO: buthionine sulfoximine; CV: coefficient of variation; DIV: days in vitro; H4K16ac: histone 4 lysine 16 acetylation; iPSC: induced-pluripotent stem cell; KANSL1: KAT8 regulatory NSL complex subunit 1; KdVS: Koolen-de Vries Syndrome; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEA: micro-electrode array; MTOR: mechanistic target of rapamycin kinase; NSL complex: nonspecific lethal complex; 8-oxo-dG: 8-hydroxydesoxyguanosine; RAP: rapamycin; ROS: reactive oxygen species; sEPSCs: spontaneous excitatory postsynaptic currents; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; SYN: synapsin; WRT: wortmannin.


Bi-allelic Variants in METTL5 Cause Autosomal-Recessive Intellectual Disability and Microcephaly.

  • Elodie M Richard‎ et al.
  • American journal of human genetics‎
  • 2019‎

Intellectual disability (ID) is a genetically and clinically heterogeneous disorder, characterized by limited cognitive abilities and impaired adaptive behaviors. In recent years, exome sequencing (ES) has been instrumental in deciphering the genetic etiology of ID. Here, through ES of a large cohort of individuals with ID, we identified two bi-allelic frameshift variants in METTL5, c.344_345delGA (p.Arg115Asnfs∗19) and c.571_572delAA (p.Lys191Valfs∗10), in families of Pakistani and Yemenite origin. Both of these variants were segregating with moderate to severe ID, microcephaly, and various facial dysmorphisms, in an autosomal-recessive fashion. METTL5 is a member of the methyltransferase-like protein family, which encompasses proteins with a seven-beta-strand methyltransferase domain. We found METTL5 expression in various substructures of rodent and human brains and METTL5 protein to be enriched in the nucleus and synapses of the hippocampal neurons. Functional studies of these truncating variants in transiently transfected orthologous cells and cultured hippocampal rat neurons revealed no effect on the localization of METTL5 but alter its level of expression. Our in silico analysis and 3D modeling simulation predict disruption of METTL5 function by both variants. Finally, mettl5 knockdown in zebrafish resulted in microcephaly, recapitulating the human phenotype. This study provides evidence that biallelic variants in METTL5 cause ID and microcephaly in humans and highlights the essential role of METTL5 in brain development and neuronal function.


De novo mutations in PLXND1 and REV3L cause Möbius syndrome.

  • Laura Tomas-Roca‎ et al.
  • Nature communications‎
  • 2015‎

Möbius syndrome (MBS) is a neurological disorder that is characterized by paralysis of the facial nerves and variable other congenital anomalies. The aetiology of this syndrome has been enigmatic since the initial descriptions by von Graefe in 1880 and by Möbius in 1888, and it has been debated for decades whether MBS has a genetic or a non-genetic aetiology. Here, we report de novo mutations affecting two genes, PLXND1 and REV3L in MBS patients. PLXND1 and REV3L represent totally unrelated pathways involved in hindbrain development: neural migration and DNA translesion synthesis, essential for the replication of endogenously damaged DNA, respectively. Interestingly, analysis of Plxnd1 and Rev3l mutant mice shows that disruption of these separate pathways converge at the facial branchiomotor nucleus, affecting either motoneuron migration or proliferation. The finding that PLXND1 and REV3L mutations are responsible for a proportion of MBS patients suggests that de novo mutations in other genes might account for other MBS patients.


Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders.

  • Holly A F Stessman‎ et al.
  • American journal of human genetics‎
  • 2016‎

Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: