Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Circulating galectin-3 promotes tumor-endothelium-adhesion by upregulating ICAM-1 in endothelium-derived extracellular vesicles.

  • Lei Wang‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

The adhesion of tumor cells to vascular endothelial cells is an important process of tumor metastasis. Studies have shown that tumor could educate vascular endothelial cells to promote tumor metastasis through many ways. However, the effect of tumor cells on the functions of vascular endothelial cells-derived extracellular vesicles (H-EVs) and the mechanisms underlying their effects in tumor-endothelium adhesion in metastasis remain mysterious. In this study, we found that H-EVs promoted the adhesion of triple negative breast cancer cell to endothelial cells and cirGal-3 enhanced the adhesion-promoting effects of H-EVs. The underlying mechanism was related to the upregulation of glycolysis in endothelial cells induced by cirGal-3 which led to the increase of the ICAM-1 expression and its transmission to MDA-MB-231 cells by H-EVs. Targeting of cirGal-3 or glycolysis of vascular endothelium in breast cancer therefore represents a promising therapeutic strategy to reduce metastasis.


A Cyclic Peptide Epitope of an Under-Explored VEGF-B Loop 1 Demonstrated In Vivo Anti-Angiogenic and Anti-Tumor Activities.

  • Lei Wang‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Pathological angiogenesis is mainly initiated by the binding of abnormal expressed vascular endothelial growth factors (VEGFs) to their receptors (VEGFRs). Blocking the VEGF/VEGFR interaction is a clinically proven treatment in cancer. Our previous work by epitope scan had identified cyclic peptides, mimicking the loop 1 of VEGF-A, VEGF-B and placental growth factor (PlGF), inhibited effectively the VEGF/VEGFR interaction in ELISA. We described here the docking study of these peptides on VEGFR1 to identify their binding sites. The cellular anti-angiogenic activities were examined by inhibition of VEGF-A induced cell proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs). The ability of these peptides to inhibit MAPK/ERK1/2 signaling pathway was examined as well. On chick embryo chorioallantoic membrane (CAM) model, a cyclic peptide named B-cL1 with most potent in vitro activity showed important in vivo anti-angiogenic effect. Finally, B-cL1 inhibited VEGF induced human gastric cancer SGC-7901 cells proliferation. It showed anti-tumoral effect on SGC-7901 xenografted BALB/c nude mouse model. The cyclic peptides B-cL1 constitutes an anti-angiogenic peptide drug lead for the design of new and more potent VEGFR antagonists in the treatment of angiogenesis related diseases.


Celastrol Suppresses Glioma Vasculogenic Mimicry Formation and Angiogenesis by Blocking the PI3K/Akt/mTOR Signaling Pathway.

  • Yingjun Zhu‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Angiogenesis and vasculogenic mimicry (VM) are thought to be the predominant processes ensuring tumor blood supply during the growth and metastasis of glioblastoma (GBM). Celastrol has potential anti-glioma effects, however the mechanisms underlying these effects remain unclarified. Recent studies have shown that the PI3K/Akt/mTOR signaling pathway is closely related to angiogenesis and VM formation. In the present study, we have demonstrated, for the first time, that celastrol eliminated VM formation by blocking this signaling pathway in glioma cells. By the treatment of celastrol, tumor growth was suppressed, tight junction and basal lamina structures in tumor microvasculature were disarranged in U87 glioma orthotopic xenografts in nude mice. Periodic acid Schiff (PAS)-CD31 staining revealed that celastrol inhibited both VM and angiogenesis in tumor tissues. Additionally, celastrol reduced the expression levels of the angiogenesis-related proteins CD31, vascular endothelial growth factor receptor (VEGFR) 2, angiopoietin (Ang) 2 and VEGFA, VM-related proteins ephrin type-A receptor (EphA) 2, and vascular endothelial (VE)-cadherin. Hypoxia inducible factor (HIF)-1α, phosphorylated PI3K, Akt, and mTOR were also downregulated by treatment with celastrol. In vitro, we further demonstrated that celastrol inhibited the growth, migration, and invasion of U87 and U251 cells, disrupted VM formation, and blocked the activity of PI3K, Akt, and mTOR. Collectively, our data suggest that celastrol inhibits VM formation and angiogenesis likely by regulating the PI3K/Akt/mTOR signaling pathway.


Design, synthesis, antiviral activities of ferulic acid derivatives.

  • Jin-Long Mao‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

A series of novel ferulic acid derivatives were designed and synthesized, and the twenty-one compounds were evaluated for their antiviral activities against Respiratory syncytial virus (RSV), herpes simplex virus type 1 (HSV-1), and enterovirus type 71 (EV71). These derivatives with the core structure of diphenyl acrylic acids had cis-trans isomers, which were confirmed by 1H NMR, HPLC, and UV-vis spectra for the first time. The A5 had a selective effect against RSV but no work on herpes simplex virus type 1 and enterovirus type 71, which showed a therapeutic index (TI) of 32 and was significantly better than ferulic acid. The A5 had no scavenging effect on free radicals, but the A2 as the degradation of A5 showed an obvious scavenging effect on DPPH· and ABTS+·. In addition, the A5 had no toxicity to endothelial cells and even showed a proliferative effect. Therefore, the A5 is worth further optimizing its structure as a lead compound and investigating the mechanism of inhibiting Respiratory syncytial virus.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: