Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Inactivation of Endothelial ADAM17 Reduces Retinal Ischemia-Reperfusion Induced Neuronal and Vascular Damage.

  • Diana R Gutsaeva‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Retinal ischemia contributes to visual impairment in ischemic retinopathies. A disintegrin and metalloproteinase ADAM17 is implicated in multiple vascular pathologies through its ability to regulate inflammatory signaling via ectodomain shedding. We investigated the role of endothelial ADAM17 in neuronal and vascular degeneration associated with retinal ischemia reperfusion (IR) injury using mice with conditional inactivation of ADAM17 in vascular endothelium. ADAM17Cre-flox and control ADAM17flox mice were subjected to 40 min of pressure-induced retinal ischemia, with the contralateral eye serving as control. Albumin extravasation and retinal leukostasis were evaluated 48 h after reperfusion. Retinal morphometric analysis was conducted 7 days after reperfusion. Degenerate capillaries were assessed by elastase digest and visual function was evaluated by optokinetic test 14 and 7 days following ischemia, respectively. Lack of ADAM17 decreased vascular leakage and reduced retinal thinning and ganglion cell loss in ADAM17Cre-flox mice. Further, ADAM17Cre-flox mice exhibited a remarkable reduction in capillary degeneration following IR. Decrease in neurovascular degeneration in ADAM17Cre-flox mice correlated with decreased activation of caspase-3 and was associated with reduction in oxidative stress and retinal leukostasis. In addition, knockdown of ADAM17 resulted in decreased cleavage of p75NTR, the process known to be associated with retinal cell apoptosis. A decline in visual acuity evidenced by decrease in spatial frequency threshold observed in ADAM17flox mice was partially restored in ADAM17-endothelial deficient mice. The obtained results provide evidence that endothelial ADAM17 is an important contributor to IR-induced neurovascular damage in the retina and suggest that interventions directed at regulating ADAM17 activity can be beneficial for alleviating the consequences of retinal ischemia.


Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells.

  • Feng Jiao‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Cancer stem cells (CSCs) play a vital role in tumor initiation, progression, metastasis, chemoresistance, and recurrence. The mechanisms that maintain the stemness of these cells remain largely unknown. Our previous study indicated that MALAT-1 may serve as an oncogenic long noncoding RNA in pancreatic cancer by promoting epithelial-mesenchymal transition (EMT) and regulating CSCs markers expression. More significantly, there is emerging evidence that the EMT process may give rise to CSCs, or at least cells with stem cell-like properties. Therefore, we hypothesized that MALAT-1 might enhance stem cell-like phenotypes in pancreatic cancer cells. In this study, our data showed that MALAT-1 could increase the proportion of pancreatic CSCs, maintain self-renewing capacity, decrease the chemosensitivity to anticancer drugs, and accelerate tumor angiogenesis in vitro. In addition, subcutaneous nude mouse xenografts revealed that MALAT-1 could promote tumorigenicity of pancreatic cancer cells in vivo. The underlying mechanisms may involve in increased expression of self-renewal related factors Sox2. Collectively, we for the first time found the potential effects of MALAT-1 on the stem cell-like phenotypes in pancreatic cancer cells, suggesting a novel role of MALAT-1 in tumor stemness, which remains to be fully elucidated.


miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model.

  • Lei Wang‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

miR-126 has recently been implicated in modulating angiogenic factors in vascular development. Understandings its biological significance might enable development of therapeutic interventions for diseases like age-related macular degeneration (AMD). We aimed to determine the role of miR-126 in AMD using a laser-induced choroidal neovascularization (CNV) mouse model. CNV was induced by laser photocoagulation in C57BL/6 mice. The CNV mice were transfected with scrambled miR or miR-126 mimic. The expression of miR-126, vascular endothelial growth factor-A (VEGF-A), Kinase insert domain receptor (KDR) and Sprouty-related EVH1 domain-containing protein 1 (SPRED-1) in ocular tissues were analyzed by qPCR and Western blot. The overexpression effects of miR-126 were also proven on human microvascular endothelial cells (HMECs). miR-126 showed a significant decrease in CNV mice (p < 0.05). Both mRNA and protein levels of VEGF-A, KDR and SPRED-1 were upregulated with CNV; these changes were ameliorated by restoration of miR-126 (p < 0.05). CNV was reduced after miR-126 transfection. Transfection of miR-126 reduced the HMECs 2D-capillary-like tube formation (p < 0.01) and migration (p < 0.01). miR-126 has been shown to be a negative modulator of angiogenesis in the eye. All together these results high lights the therapeutic potential of miR-126 suggests that it may contribute as a putative therapeutic target for AMD in humans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: