Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

PIERCE1 is critical for specification of left-right asymmetry in mice.

  • Young Hoon Sung‎ et al.
  • Scientific reports‎
  • 2016‎

The specification of left-right asymmetry of the visceral organs is precisely regulated. The earliest breakage of left-right symmetry occurs as the result of leftward flow generated by asymmetric beating of nodal cilia, which eventually induces asymmetric Nodal/Lefty/Pitx2 expression on the left side of the lateral plate mesoderm. PIERCE1 has been identified as a p53 target gene involved in the DNA damage response. In this study, we found that Pierce1-null mice exhibit severe laterality defects, including situs inversus totalis and heterotaxy with randomized situs and left and right isomerisms. The spectrum of laterality defects was closely correlated with randomized expression of Nodal and its downstream genes, Lefty1/2 and Pitx2. The phenotype of Pierce1-null mice most closely resembled that of mutant mice with impaired ciliogenesis and/or ciliary motility of the node. We also found the loss of asymmetric expression of Cerl2, the earliest flow-responding gene in the node of Pierce1-null embryos. The results suggest that Pierce1-null embryos have defects in generating a symmetry breaking signal including leftward nodal flow. This is the first report implicating a role for PIERCE1 in the symmetry-breaking step of left-right asymmetry specification.


Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice.

  • Tao Tong‎ et al.
  • Scientific reports‎
  • 2016‎

Adenylyl cyclase 3 (Adcy3), a member of the mammalian adenylyl cyclase family responsible for generating the second messenger cAMP, has long been known to play an essential role in olfactory signal transduction. Here, we demonstrated that Adcy3 heterozygous null mice displayed increased visceral adiposity in the absence of hyperphagia and developed abnormal metabolic features characterized by impaired insulin sensitivity, dyslipidemia, and increased plasma levels of proinflammatory cytokines on both chow and high-fat diet (HFD). Of note, HFD decreased the Adcy3 expression in white adipose tissue, liver, and muscle. We also report for the first time that Adcy3 haploinsufficiency resulted in reduced expression of genes involved in thermogenesis, fatty acid oxidation, and insulin signaling, with enhanced expression of genes related to adipogenesis in peripheral tissues of mice. In conclusion, these findings suggest that cAMP signals generated by Adcy3 in peripheral tissues may play a pivotal role in modulating obesity and insulin sensitivity.


The position of the target site for engineered nucleases improves the aberrant mRNA clearance in in vivo genome editing.

  • Jae Hoon Lee‎ et al.
  • Scientific reports‎
  • 2020‎

Engineered nucleases are widely used for creating frameshift or nonsense mutations in the target genes to eliminate gene functions. The resulting mRNAs carrying premature termination codons can be eliminated by nonsense-mediated mRNA decay. However, it is unclear how effective this process would be in vivo. Here, we found that the nonsense-mediated decay was unable to remove the mutant mRNAs in twelve out of sixteen homozygous mutant mice with frameshift mutations generated using engineered nucleases, which is far beyond what we expected. The frameshift mutant proteins translated by a single nucleotide deletion within the coding region were also detected in the p53 mutant mice. Furthermore, we showed that targeting the exons present downstream of the exons with a start codon or distant from ATG is relatively effective for eliminating mutant mRNAs in vivo, whereas the exons with a start codon are targeted to express the mutant mRNAs. Of the sixteen mutant mice generated, only four mutant mice targeting the downstream exons exhibited over 80% clearance of mutant mRNAs. Since the abnormal products, either mutant RNAs or mutant proteins, expressed by the target alleles might obscure the outcome of genome editing, these findings will provide insights in the improved performance of engineered nucleases when they are applied in vivo.


The R229Q mutation of Rag2 does not characterize severe immunodeficiency in mice.

  • Young Jin‎ et al.
  • Scientific reports‎
  • 2019‎

RAG1 or RAG2 mutations are associated with defects in V(D)J recombination activity, causing severe immunodeficiency with a wide spectrum of clinical phenotypes. A R229Q mutation of RAG2 was identified in patients with severe combined immunodeficiency (SCID) or Omenn syndrome (OS). Although some factors determining the clinical features between SCID and OS were not clear, the molecular mechanism of OS was studied in a mouse model in which an EGFP tag is fused to Rag2 with the R229Q mutation. To design the human disease model mimicking severe immunodeficiency, we generated Rag2-R229Q knock-in mice without an epitope tag. Mutant mice showed impaired T and B cell differentiation with reduced V(D)J recombination activity; however, the extent to which the R229Q mutation affects severe immunodeficiency was not severe. While Rag2-R229Q mutation under some conditions may cause severe immunological and clinical phenotypes similar to human SCID or OS, R229Q mutation per se did not cause severe immunodeficiency in mice, suggesting that additional factors other than R229Q mutation are required to induce severe immunodeficiency. Thus, our report implies that the effects of genetic background and/or a tagged protein sequence may alter the mouse immune system, revealing the mechanism of phenotypic heterogeneity arising from an identical mutation.


Sexually dimorphic leanness and hypermobility in p16Ink4a/CDKN2A-deficient mice coincides with phenotypic changes in the cerebellum.

  • Kwang H Kim‎ et al.
  • Scientific reports‎
  • 2019‎

p16Ink4a/CDKN2A is a tumor suppressor that critically regulates the cell cycle. Indeed, p16Ink4a deficiency promotes tumor formation in various tissues. We now report that p16Ink4a deficiency in female mice, but not male mice, induces leanness especially in old age, as indicated by lower body weight and smaller white adipose tissue, although other major organs are unaffected. Unexpectedly, the integrity, number, and sizes of adipocytes in white adipose tissue were unaffected, as was macrophage infiltration. Hence, hypermobility appeared to be accountable for the phenotype, since food consumption was not altered. Histological analysis of the cerebellum and deep cerebellar nuclei, a vital sensorimotor control center, revealed increased proliferation of neuronal cells and improved cerebellum integrity. Expression of estrogen receptor β (ERβ) and PCNA also increased in deep cerebellar nuclei, implying crosstalk between p16Ink4a and ERβ. Furthermore, p16Ink4a deficiency expands LC3B+ cells and GFAP+ astrocytes in response to estrogen. Collectively, the data suggest that loss of p16INK4a induces sexually dimorphic leanness in female mice, which appears to be due to protection against cerebellar senescence by promoting neuronal proliferation and homeostasis via ERβ.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: