Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system.

  • Haiyan Ding‎ et al.
  • Biology open‎
  • 2016‎

A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production.


Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins.

  • Yalan Zhu‎ et al.
  • Molecular cell‎
  • 2019‎

Anti-CRISPR proteins (Acrs) targeting CRISPR-Cas9 systems represent natural "off switches" for Cas9-based applications. Recently, AcrIIC1, AcrIIC2, and AcrIIC3 proteins were found to inhibit Neisseria meningitidis Cas9 (NmeCas9) activity in bacterial and human cells. Here we report biochemical and structural data that suggest molecular mechanisms of AcrIIC2- and AcrIIC3-mediated Cas9 inhibition. AcrIIC2 dimer interacts with the bridge helix of Cas9, interferes with RNA binding, and prevents DNA loading into Cas9. AcrIIC3 blocks the DNA loading step through binding to a non-conserved surface of the HNH domain of Cas9. AcrIIC3 also forms additional interactions with the REC lobe of Cas9 and induces the dimerization of the AcrIIC3-Cas9 complex. While AcrIIC2 targets Cas9 orthologs from different subtypes, albeit with different efficiency, AcrIIC3 specifically inhibits NmeCas9. Structure-guided changes in NmeCas9 orthologs convert them into anti-CRISPR-sensitive proteins. Our studies provide insights into anti-CRISPR-mediated suppression mechanisms and guidelines for designing regulatory tools in Cas9-based applications.


Deficiency in T follicular regulatory cells promotes autoimmunity.

  • Weiwei Fu‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

T follicular regulatory (Tfr) cells are a new subset of regulatory T (T reg) cells localized in the germinal center to limit the humoral response. Until now, the physiological function of Tfr cells has been largely unknown. In this study, we developed a Bcl6fl/flFoxp3Cre mouse to analyze the function of Tfr cells in immune and autoimmune responses. These mice exhibited enhanced immunity to influenza virus; moreover, Bcl6fl/flFoxp3Cre/Cre mice developed late-onset spontaneous autoimmune diseases, affecting the salivary glands with lymphocyte infiltration and antibody deposition. In a mouse experimental Sjögren's syndrome model, ablation of Bcl6 in T reg cells greatly enhanced disease development. Conversely, Bcl6fl/flCd4Cre mice were protected in the model. Thus, our study indicates that Tfr cells control autoimmune diseases and can be targeted in infectious and autoimmune disease.


The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis.

  • Han Feng‎ et al.
  • Nature communications‎
  • 2017‎

New Delhi metallo-β-lactamases (NDMs), the recent additions to metallo-β-lactamases (MBLs), pose a serious public health threat due to its highly efficient hydrolysis of β-lactam antibiotics and rapid worldwide dissemination. The MBL-hydrolyzing mechanism for carbapenems is less studied than that of penicillins and cephalosporins. Here, we report crystal structures of NDM-1 in complex with hydrolyzed imipenem and meropenem, at resolutions of 1.80-2.32 Å, together with NMR spectra monitoring meropenem hydrolysis. Three enzyme-intermediate/product derivatives, EI1, EI2, and EP, are trapped in these crystals. Our structural data reveal double-bond tautomerization from Δ2 to Δ1, absence of a bridging water molecule and an exclusive β-diastereomeric product, all suggesting that the hydrolytic intermediates are protonated by a bulky water molecule incoming from the β-face. These results strongly suggest a distinct mechanism of NDM-1-catalyzed carbapenem hydrolysis from that of penicillin or cephalosporin hydrolysis, which may provide a novel rationale for design of mechanism-based inhibitors.


Long noncoding RNA DIO3OS interacts with miR-122 to promote proliferation and invasion of pancreatic cancer cells through upregulating ALDOA.

  • Kang Cui‎ et al.
  • Cancer cell international‎
  • 2019‎

Long noncoding RNA (lncRNA) has been implicated in numerous tumors, including pancreatic cancer (PC). However, the precise cellular roles and molecular mechanisms of lncRNA DIO3OS on PC development remains to be fully clarified.


Attenuation of estrogen and its receptors in the post-menopausal stage exacerbates dyslipidemia and leads to cognitive impairment.

  • Qinghai Meng‎ et al.
  • Molecular brain‎
  • 2023‎

Cognitive dysfunction increases as menopause progresses. We previously found that estrogen receptors (ERs) contribute to dyslipidemia, but the specific relationship between ERs, dyslipidemia and cognitive dysfunction remains poorly understood. In the present study, we analyzed sequencing data from female hippocampus and normal breast aspirate samples from normal and Alzheimer's disease (AD) women, and the results suggest that abnormal ERs signaling is associated with dyslipidemia and cognitive dysfunction. We replicated a mouse model of dyslipidemia and postmenopausal status in LDLR-/- mice and treated them with β-estradiol or simvastatin, and found that ovariectomy in LDLR-/- mice led to an exacerbation of dyslipidemia and increased hippocampal apoptosis and cognitive impairment, which were associated with reduced estradiol levels and ERα, ERβ and GPER expression. In vitro, a lipid overload model of SH-SY-5Y cells was established and treated with inhibitors of ERs. β-estradiol or simvastatin effectively attenuated dyslipidemia-induced neuronal apoptosis via upregulation of ERs, whereas ERα, ERβ and GPER inhibitors together abolished the protective effect of simvastatin on lipid-induced neuronal apoptosis. We conclude that decreased estrogen and its receptor function in the postmenopausal stage promote neuronal damage and cognitive impairment by exacerbating dyslipidemia, and that estrogen supplementation or lipid lowering is an effective way to ameliorate hippocampal damage and cognitive dysfunction via upregulation of ERs.


Identifying the prognostic significance of early arrhythmia recurrence during the blanking period and the optimal blanking period duration: insights from the DECAAF II study.

  • Charbel Noujaim‎ et al.
  • Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology‎
  • 2023‎

Early atrial arrhythmia recurrence following atrial fibrillation (AF) ablation is common. Current guidelines promulgate a 3-month blanking period. We hypothesize that early atrial arrhythmia recurrence during the blanking period may predict longer-term ablation outcomes.


Fish Oil Feeding Modulates the Expression of Hepatic MicroRNAs in a Western-Style Diet-Induced Nonalcoholic Fatty Liver Disease Rat Model.

  • Hualin Wang‎ et al.
  • BioMed research international‎
  • 2017‎

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases worldwide. Recent studies have indicated that fish oil supplementation has benefits against NAFLD. Our previous transcriptomic study has validated the effect of fish oil supplementation on altering hepatic gene expression in a NAFLD rat model. In the current study, we examined the effects of fish oil on the expression of hepatic microRNAs. Male Sprague-Dawley rats were fed with a lab chow (CON), high-fat high-cholesterol diet (WD), or WD supplemented with fish oil (FOH), respectively. Small RNAs were extracted from livers for RNA-sequencing. A total of 79 miRNAs were identified as differentially expressed miRNAs (DEMs) between FOH and WD groups, exemplified by rno-miR-29c-3p, rno-miR-30d-5p, rno-miR-33-5p, rno-miR-34a, and rno-miR-328a-3p. Functional annotation of DEMs predicted target genes suggested that the altered hepatic miRNAs contributed to fish oil modification of hepatic lipid metabolism and signaling transduction. Integrative analysis of DEMs and differentially expressed genes suggested that the expression difference of Pcsk9, Insig2, Per3, and Socs1/3 between FOH and WD groups may be due to miRNA modification. Our study reveals that fish oil supplementation alters hepatic expression of miRNAs, which may contribute to fish oil amelioration of NAFLD in rats.


Splicing factor SF3B1K700E mutant dysregulates erythroid differentiation via aberrant alternative splicing of transcription factor TAL1.

  • Shuiling Jin‎ et al.
  • PloS one‎
  • 2017‎

More than 60% of myeloid dysplasia syndrome (MDS) contains mutations in genes encoding for splicing factors such as SF3B1, U2AF, SRSF2 and ZRSR2. Mutations in SF3B1 are associated with 80% cases of refractory anemia with ring sideroblast (RARS), a subtype of MDS. SF3B1K700E is the most frequently mutated site among mutations on SF3B1. Yet the molecular mechanisms on how mutations of splicing factors lead to defective erythropoiesis are not clear. SF3B1K700E mutant binds to an RNA binding protein, RBM15, stronger than the wild type SF3B1 protein in co-immunoprecipitation assays. In addition, K700E mutant alters the RNA splicing of transcription factors TAL1 and GATA1. Via alternative RNA splicing, a novel short TAL1 transcript variant (TAL1s) is generated. Enhanced interaction between SF3B1 and RBM15 promotes the production of full-length TAL1 (TAL1fl) mRNA, while reduction of RBM15 protein level via PRMT1-mediated degradation pathway changes TAL1s/TAL1fl ratio in favor of TAL1s. TAL1s contains the helix-loop-helix DNA binding domain but not the N terminal region upstream of the DNA binding domain. The TAL1s protein loses its interaction with ETO2, which represses early erythropoiesis. In this vein, overexpression of TAL1s stimulates the transcription of β-hemoglobin in human leukemia K562 cells and promotes erythroid differentiation of human cord blood CD34+ cells cultured in erythropoietin-containing medium. Therefore, mutations of SF3B1 may block erythropoiesis via dysregulation of alternative RNA splicing of transcription factor TAL1, and targeting PRMT1 may alleviate the anemic symptoms in MDS patients.


C1q/tumor necrosis factor-related protein-3 enhances the contractility of cardiomyocyte by increasing calcium sensitivity.

  • Cheng-Lin Zhang‎ et al.
  • Cell calcium‎
  • 2017‎

C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine that protects against myocardial infarction-induced cardiac dysfunction through its pro-angiogenic, anti-apoptotic, and anti-fibrotic effects. However, whether CTRP3 can directly affect the systolic and diastolic function of cardiomyocytes remains unknown. Adult rat cardiomyocytes were isolated and loaded with Fura-2AM. The contraction and Ca2+ transient data was collected and analyzed by IonOptix system. 1 and 2μg/ml CTRP3 significantly increased the contraction of cardiomyocytes. However, CTRP3 did not alter the diastolic Ca2+ content, systolic Ca2+ content, Ca2+ transient amplitude, and L-type Ca2+ channel current. To reveal whether CTRP3 affects the Ca2+ sensitivity of cardiomyocytes, the typical phase-plane diagrams of sarcomere length vs. Fura-2 ratio was performed. We observed a left-ward shifting of the late relaxation trajectory after CTRP3 perfusion, as quantified by decreased Ca2+ content at 50% sarcomere relaxation, and increased mean gradient (μm/Fura-2 ratio) during 500-600ms (-0.163 vs. -0.279), 500-700ms (-0.159 vs. -0.248), and 500-800ms (-0.148 vs. -0.243). Consistently, the phosphorylation level of cardiac troponin I at Ser23/24 was reduced by CTRP3, which could be eliminated by preincubation of okadaic acid, a type 2A protein phosphatase inhibitor. In summary, CTRP3 increases the contraction of cardiomyocytes by increasing the myofilament Ca2+ sensitivity. CTRP3 might be a potential endogenous Ca2+ sensitizer that modulates the contractility of cardiomyocytes.


A redox-triggered C-centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy.

  • Jian Chen‎ et al.
  • Biomaterials‎
  • 2021‎

Current chemodynamic therapy (CDT) has been restricted by the requirement of strongly acidic conditions, insufficient endogenous H2O2 and upregulated cellular antioxidant defense. To overcome these obstacles, the carrier-free Fe(III)-ART nanoparticle is developed via coordination driven self-assembly of Fe3+ and hydrolyzed ART and evaluated as a redox-triggered C-centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy. The carrier-free Fe(III)-ART NPs can be triggered by intracellular GSH to release ART and Fe3+, which is further reduced to Fe2+ that catalyzed the endoperoxide of ART to generate C-centered free radicals. Notably, unlike current CDT, such a free radical generation process is without reliance on pH or endogenous H2O2. Meanwhile, the concurrent GSH depletion can diminish the antioxidation of tumors and enhance CDT. The C-centered free radicals-mediated apoptosis and GSH depletion-induced ferrotosis act in synergy, leading to potent tumor growth inhibition and superior anticancer efficacy in vitro and in vivo. Moreover, Fe(III)-ART NPs exhibit redox-triggered T2 relaxivity and contribute to activatable MRI-guided CDT. The development of biodegradable Fe(III)-ART NPs with superior anticancer efficacy, favorable pharmacokinetics and good biocompatibility provides a promising strategy to break through the bottlenecks of traditional CDT and greatly promotes the development of next-generation cancer theranostics.


Globular CTRP3 promotes mitochondrial biogenesis in cardiomyocytes through AMPK/PGC-1α pathway.

  • Cheng-Lin Zhang‎ et al.
  • Biochimica et biophysica acta. General subjects‎
  • 2017‎

Mitochondrial biogenesis is crucial for the maintenance of mitochondrial function and cellular homeostasis. C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine that owns multiple functions on metabolic and cardiovascular diseases. However, whether CTRP3 affects mitochondrial biogenesis in cardiomyocytes remains unknown.


Persistent Expression of VCAM1 in Radial Glial Cells Is Required for the Embryonic Origin of Postnatal Neural Stem Cells.

  • Xiao-Ling Hu‎ et al.
  • Neuron‎
  • 2017‎

During development, neural stem cells (NSCs) undergo transitions from neuroepithelial cells to radial glial cells (RGCs), and later, a subpopulation of slowly dividing RGCs gives rise to the quiescent adult NSCs that populate the ventricular-subventricular zone (V-SVZ). Here we show that VCAM1, a transmembrane protein previously found in quiescent adult NSCs, is expressed by a subpopulation of embryonic RGCs, in a temporal and region-specific manner. Loss of VCAM1 reduced the number of active embryonic RGCs by stimulating their premature neuronal differentiation while preventing quiescence in the slowly dividing RGCs. This in turn diminished the embryonic origin of postnatal NSCs, resulting in loss of adult NSCs and defective V-SVZ regeneration. VCAM1 affects the NSC fate by signaling through its intracellular domain to regulate β-catenin signaling in a context-dependent manner. Our findings provide new insight on how stem cells in the embryo are preserved to meet the need for growth and regeneration.


The Effectiveness of Drying on Residual Droplets, Microorganisms, and Biofilms in Gastrointestinal Endoscope Reprocessing: A Systematic Review.

  • Hefeng Tian‎ et al.
  • Gastroenterology research and practice‎
  • 2021‎

Despite endoscope reprocessing, residual droplets remain in gastrointestinal endoscope working channels. Inadequate drying of gastrointestinal endoscope working channels may promote microbial reproduction and biofilm formation, increasing the risk of infection in patients. This review was designed to provide the current status of gastrointestinal endoscope drying, emphasize the importance of gastrointestinal endoscope drying, and evaluate the effectiveness of different drying methods of gastrointestinal endoscope in reducing residual droplets and microbial growth risk.


Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion.

  • Guangjun Xu‎ et al.
  • Molecular cell‎
  • 2021‎

DNA-induced liquid-liquid phase separation of cyclic GMP-AMP synthase (cGAS) triggers a potent response to detect pathogen infection and promote innate immune signaling. Whether and how pathogens manipulate cGAS-DNA condensation to mediate immune evasion is unknown. We report the identification of a structurally related viral tegument protein family, represented by ORF52 and VP22 from gamma- and alpha-herpesvirinae, respectively, that employs a conserved mechanism to restrict cGAS-DNA phase separation. ORF52/VP22 proteins accumulate into, and effectively disrupt, the pre-formed cGAS-DNA condensation both in vitro and in cells. The inhibition process is dependent on DNA-induced liquid-liquid phase separation of the viral protein rather than a direct interaction with cGAS. Moreover, highly abundant ORF52 proteins carried within viral particles are able to target cGAS-DNA phase separation in early infection stage. Our results define ORF52/VP22-type tegument proteins as a family of inhibitors targeting cGAS-DNA phase separation and demonstrate a mechanism for how viruses overcome innate immunity.


The Transcription Factor Tox2 Drives T Follicular Helper Cell Development via Regulating Chromatin Accessibility.

  • Wei Xu‎ et al.
  • Immunity‎
  • 2019‎

T follicular helper (Tfh) cells provide essential help to B cells in germinal center (GC) reactions. Bcl6 is the obligatory lineage transcription factor in Tfh cells. Here, we examined the molecular pathways that induce Bcl6 gene expression and underscore Bcl6-dependent function during Tfh cell commitment. Integration of genome-wide Bcl6 occupancy in Tfh cells and differential gene expression analyses suggested an important role for the transcription factor Tox2 in Tfh cell differentiation. Ectopic expression of Tox2 was sufficient to drive Bcl6 expression and Tfh development. In genome-wide ChIP-seq analyses, Tox2-bound loci associated with Tfh cell differentiation and function, including Bcl6. Tox2 binding was associated with increased chromatin accessibility at these sites, as measured by ATAC-seq. Tox2-/- mice exhibited defective Tfh differentiation, and inhibition of both Tox2 and the related transcription factor Tox abolished Tfh differentiation. Thus, a Tox2-Bcl6 axis establishes a transcriptional feed-forward loop that promotes the Tfh program.


Methylation of dual-specificity phosphatase 4 controls cell differentiation.

  • Hairui Su‎ et al.
  • Cell reports‎
  • 2021‎

Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity phosphatases (DUSPs), the activities of which are tightly regulated during cell differentiation. Using knockdown screening and single-cell transcriptional analysis, we demonstrate that DUSP4 is the phosphatase that specifically inactivates p38 kinase to promote megakaryocyte (Mk) differentiation. Mechanistically, PRMT1-mediated methylation of DUSP4 triggers its ubiquitinylation by an E3 ligase HUWE1. Interestingly, the mechanistic axis of the DUSP4 degradation and p38 activation is also associated with a transcriptional signature of immune activation in Mk cells. In the context of thrombocytopenia observed in myelodysplastic syndrome (MDS), we demonstrate that high levels of p38 MAPK and PRMT1 are associated with low platelet counts and adverse prognosis, while pharmacological inhibition of p38 MAPK or PRMT1 stimulates megakaryopoiesis. These findings provide mechanistic insights into the role of the PRMT1-DUSP4-p38 axis on Mk differentiation and present a strategy for treatment of thrombocytopenia associated with MDS.


LncRNA BC200 Promotes Esophageal Squamous Cell Cancer Migration and Invasion and Can Regulate ATF4 Expression.

  • Ruihua Zhao‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Background: The main reason for esophageal squamous cell carcinoma (ESCC) treatment failure is metastasis. Little is known about the mechanisms involved in the metastasis of ESCC, and there is a lack of effective therapeutic targets. In our previous study, we found that patients with high levels of BC200 tended to have poor prognoses. Methods: First, we applied qRT-PCR to detect the expression level of BC200 in normal esophageal squamous epithelial cells and ESCC cells with different degrees of differentiation ability. Then, we changed BC200 expression by transfecting constructed lentiviruses that included BC200 shRNA (LV-BC200-shRNA, KD), negative control (CON053, NC), or BC200 gene (LV-BC200, BC200) to create BC200-deficient cell models in KYSE410 and KYSE70 cells and BC200 overexpression cell models in EC9706 cells and verified the transfection effect by qRT-PCR. Then, we examined cell migration by wound healing assay, invasion by Transwell assay, and proliferation by MTT assay and examined the metastasis ability in a xenograft mouse model. Gene expression profiling was performed to screen a panel of mRNAs following inhibition of BC200 expression. We then used ingenuity pathway analysis (IPA) to analyze the functions of the changed molecules and their interactions. The results from the microarray were validated by qRT-PCR and Western blotting. Results: In this study, we found that the expression of BC200 in poorly differentiated cell lines was significantly higher than that in well-differentiated cell lines. BC200 can significantly promote the migration and invasion but not the proliferation ability of ESCC cells in vitro and BC200 shRNA can significantly suppress tumor metastasis in vivo. Our genome-wide expression profile chip showed 406 differentially expressed genes, with 91 upregulated genes and 315 downregulated genes. The upstream regulator analysis showed that ATF4 was predicted to be strongly inhibited and 21 genes were consistently inhibited by this gene. Our qRT-PCR and Western blotting data also identified the reduced expression of ATF4 and some selected downstream genes, such as SNAIL2, GADD45A, and PSAT1, as a consequence of downregulating BC200 expression in ESCC. Conclusion: Our data showed that BC200 promoted the metastasis of ESCC cells and could regulate the expression of ATF4 and its downstream genes.


CTRP3 promotes energy production by inducing mitochondrial ROS and up-expression of PGC-1α in vascular smooth muscle cells.

  • Han Feng‎ et al.
  • Experimental cell research‎
  • 2016‎

C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine with modulation effects on metabolism and inflammation. Adenosine triphosphate (ATP) exerts multiple biological effects in vascular smooth muscle cells (VSMCs) and energy imbalance is involved in vascular diseases. This study aimed to explore the effect of CTRP3 on energy production and its underlying mechanism in VSMCs. Our results indicated that exogenous CTRP3 increased ATP synthesis and the protein expression of oxidative phosphorylation (OXPHOS)-related molecules, including peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, sirtuin-3 (SIRT3), complex I, II, III, and V in cultured VSMCs. Depletion of endogenous CTRP3 by small interfering RNA (siRNA) reduced ATP synthesis and the expression of those molecules. PGC-1α knockdown abrogated CTRP3-induced ATP production and OXPHOS-related protein expression. Furthermore, CTRP3 increased mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential level. Pretreatment with N-acetyl-L-cysteine, a reactive oxygen species scavenger, and cyanidem-chlorophenylhydrazone, an uncoupler of OXPHOS, suppressed CTRP3-induced ROS production, PGC-1α expression and ATP synthesis. In conclusion, CTRP3 modulates mitochondrial energy production through targets of ROS and PGC-1α in VSMCs.


Aucubin and its hydrolytic derivative attenuate activation of hepatic stellate cells via modulation of TGF-β stimulation.

  • Pei-Yu Lv‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2017‎

Eucommia ulmoides is an important traditional Chinese medicine and has been used as a tonic with a long history. Aucubin is an active component extracted from Eucommia ulmoides, which has liver-protection effects. However the mechanisms are still unclear. To investigate the inhibitory effects and the underlying mechanisms of aucubin on TGF-β1-induced activation of hepatic stellate cells and ECM deposition, Human hepatic stellate cells (LX-2 cells) were incubated with TGF-β1 to evaluate the anti-fibrotic effect of aucubin. Western blot was used to investigate the expression of α-SMA, Col I, Col III, MMP-2 and TIMP-1. ROS production was monitored using DCFH-DA probe, and NOX4 expression was detected by Real-time PCR. Results indicated that TGF-β1 stimulated the activation and ECM deposition of LX-2 cells. Compared with the control group, aucubin and aucubigenin both reduced the protein expression of α-SMA, Col I, Col III and MMP-2 in LX-2 cells. Aucubin and aucubigenin also suppressed the generation of ROS and down-regulated the NOX4 mRNA expression. Taken together, aucubin and aucubigenin both inhibit the activation and ECM deposition of LX-2 cells activated by TGF-β1. Aucubin and aucubigenin are potential therapeutic candidate drugs for liver fibrosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: