Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 76 papers

Cytotoxic and Pro-Apoptotic Effects of Cassane Diterpenoids from the Seeds of Caesalpinia sappan in Cancer Cells.

  • Han Bao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

The chemical study on the seeds of Caesalpinia sappan led to the isolation of five new cassane diterpenoids, phanginins R‒T (1-3) and caesalsappanins M and N (4 and 5), together with seven known compounds 6-12. Their structures were elucidated on the basis of NMR and HRESIMS analyses. The absolute configurations of compounds 1 and 4 were determined by the corresponding CD spectra. All the isolated compounds were tested for their cytotoxicity against ovarian cancer A2780 and HEY, gastric cancer AGS, and non-small cell lung cancer A549 cells. Compound 1 displayed significant toxicity against the four cell lines with the IC50 values of 9.9 ± 1.6 µM, 12.2 ± 6.5 µM, 5.3 ± 1.9 µM, and 12.3 ± 3.1 µM, respectively. Compound 1 induced G1 phase cell cycle arrest in A2780 cells. Furthermore, compound 1 dose-dependently induced A2780 cells apoptosis as evidenced by Hoechst 33342 staining, Annexin V positive cells, the up-regulated cleaved-PARP and the enhanced Bax/Bcl-2 ratio. What's more, compound 1 also promoted the expression of the tumor suppressor p53 protein. These findings indicate that cassane diterpenoids might have potential as anti-cancer agents, and further in vivo animal studies and structural modification investigation are needed.


LINE-1 ORF-1p enhances the transcription factor activity of pregnenolone X receptor and promotes sorafenib resistance in hepatocellular carcinoma cells.

  • Yan Chen‎ et al.
  • Cancer management and research‎
  • 2018‎

LINE-1 ORF-1p is encoded by the human pro-oncogene LINE-1. Our previous work showed that LINE-1 ORF-1p could enhance the resistance of hepatocellular carcinoma (HCC) cells to antitumor agents. However, the mechanisms involved in LINE-1 ORF-1p-mediated drug resistance remain largely unknown.


Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy.

  • Zhongying Mo‎ et al.
  • Nature communications‎
  • 2018‎

Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants aberrantly interact with Nrp1, giving insight into the disease's specific effects on motor neurons, these cannot explain length-dependent axonal degeneration. Here, we report that GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice. These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations, indicating the existence of multiple and different mechanisms in CMT2D.


Active N6-Methyladenine Demethylation by DMAD Regulates Gene Expression by Coordinating with Polycomb Protein in Neurons.

  • Bing Yao‎ et al.
  • Molecular cell‎
  • 2018‎

A ten-eleven translocation (TET) ortholog exists as a DNA N6-methyladenine (6mA) demethylase (DMAD) in Drosophila. However, the molecular roles of 6mA and DMAD remain unexplored. Through genome-wide 6mA and transcriptome profiling in Drosophila brains and neuronal cells, we found that 6mA may epigenetically regulate a group of genes involved in neurodevelopment and neuronal functions. Mechanistically, DMAD interacts with the Trithorax-related complex protein Wds to maintain active transcription by dynamically demethylating intragenic 6mA. Accumulation of 6mA by depleting DMAD coordinates with Polycomb proteins and contributes to transcriptional repression of these genes. Our findings suggest that active 6mA demethylation by DMAD plays essential roles in fly CNS by orchestrating through added epigenetic mechanisms.


Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer.

  • Bi-Lan Wang‎ et al.
  • International journal of nanomedicine‎
  • 2013‎

Systemic administration of chemotherapy for cancer often has toxic side effects, limiting the doses that can be used in its treatment. In this study, we developed methoxy poly(ethylene glycol)-poly(caprolactone) (MPEG-PCL) micelles loaded with curcumin and doxorubicin (Cur-Dox/MPEG-PCL) that were tolerated by recipient mice and had enhanced antitumor effects and fewer side effects. It was shown that these Cur-Dox/MPEG-PCL micelles could release curcumin and doxorubicin slowly in vitro. The long circulation time of MPEG-PCL micelles and the slow rate of release of curcumin and doxorubicin in vivo may help to maintain plasma concentrations of active drug. We also demonstrated that Cur-Dox/MPEG-PCL had improved antitumor effects both in vivo and in vitro. The mechanism by which Cur-Dox/MPEG-PCL micelles inhibit lung cancer might involve increased apoptosis of tumor cells and inhibition of tumor angiogenesis. We found advantages using Cur-Dox/MPEG-PCL micelles in the treatment of cancer, with Cur-Dox/MPEG-PCL achieving better inhibition of LL/2 lung cancer growth in vivo and in vitro. Our study indicates that Cur-Dox/MPEG-PCL micelles may be an effective treatment strategy for cancer in the future.


Long non-coding RNA Igf2as controls hepatocellular carcinoma progression through the ERK/MAPK signaling pathway.

  • Han Bao‎ et al.
  • Oncology letters‎
  • 2017‎

Long non-coding RNAs (lncRNAs) serve an important role in numerous human diseases, including cancer. Abnormal expression of lncRNAs has been associated with a number of tumor types; however, the underlying mechanisms through which lncRNA functions have yet to be elucidated. The present study primarily focuses on insulin-like growth factor 2 antisense 1 (Igf2as), a lncRNA reported to be differentially expressed in hepatocellular carcinoma (HCC). Reverse transcription-quantitative polymerase chain reaction analysis was used to determine the level of Igf2as in HCC cells and tissues. Flow cytometry was used to determine the level of cell apoptosis following Igf2as suppression and western blot analysis was used to identify altered protein expression levels. The results demonstrated that Igf2as was upregulated in HCC cells and tissues, and that the inhibition of Igf2as using a targeted small interfering RNA (si-Igf2as), significantly decreased cell proliferation and increased apoptosis. Western blot analysis identified that the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway was inhibited in cells transfected with si-Igf2as. In addition, cell migration was markedly reduced by the knockdown of Igf2as. These results suggest that lncRNA Igf2as may control hepatocellular progression primarily through the regulation of the ERK/MAPK signaling pathway.


Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice.

  • Ze Liu‎ et al.
  • PloS one‎
  • 2013‎

Legumain-based DNA vaccines have potential to protect against breast cancer. However, the lack of a safe and efficient oral delivery system restricts its clinical application. Here, we constructed alginic acid-coated chitosan nanoparticles (A.C.NPs) as an oral delivery carrier for a legumain DNA vaccine. First, we tested its characteristic in acidic environments in vitro. DNA agarose electrophoresis data show that A.C.NPs protected DNA better from degradation in acidic solution (pH 1.5) than did chitosan nanoparticles (C.NPs). Furthermore, size distribution analysis showed that A.C.NPs tended to aggregate and form micrometer scale complexes in pH<2.7, while dispersing into nanoparticles with an increase in pH. Mice were intragastrically administrated A.C.NPs carrying EGFP plasmids and EGFP expression was detected in the intestinal Peyer's patches. Full-length legumain plasmids were loaded into different delivery carriers, including C.NPs, attenuated Salmonella typhimurium and A.C.NPs. A.C.NPs loaded with empty plasmids served as a control. Oral vaccination was performed in the murine orthotopic 4T1 breast cancer model. Our data indicate that tumor volume was significantly smaller in groups using A.C.NPs or attenuated Salmonella typhimurium as carriers. Furthermore, splenocytes co-cultured them with 4T1 cells pre-stimulated with CoCl2, which influenced the translocation of legumain from cytoplasm to plasma membrane, showed a 4.7 and 2.3 folds increase in active cytotoxic T lymphocytes (CD3(+)/CD8(+)/CD25(+)) when treated with A.C.NPs carriers compared with PBS C.NPs. Our study suggests that C.NPs coated with alginic acid may be a safe and efficient tool for oral delivery of a DNA vaccine. Moreover, a legumain DNA vaccine delivered orally with A.C.NPs can effectively improve autoimmune response and protect against breast cancer in mice.


In vitro and in vivo Evaluation of a Novel Estrogen-Targeted PEGylated Oxaliplatin Liposome for Gastric Cancer.

  • Yuxin Sun‎ et al.
  • International journal of nanomedicine‎
  • 2021‎

Chemotherapy is still the main first-line treatment for advanced metastatic gastric cancer, but it has the limitations of serious side effects and drug resistance. Conventional liposome has been substantially used as drug carriers, but they lack targeting character with lower drug bioavailability in tumor tissues. Based on the above problems, a novel estrogen-targeted PEGylated liposome loaded with oxaliplatin (ES-SSL-OXA) was prepared to further improve the metabolic behavior, the safety profile, and the anti-tumor efficacy of oxaliplatin.


Sparse Regularized Optimal Transport with Deformed q-Entropy.

  • Han Bao‎ et al.
  • Entropy (Basel, Switzerland)‎
  • 2022‎

Optimal transport is a mathematical tool that has been a widely used to measure the distance between two probability distributions. To mitigate the cubic computational complexity of the vanilla formulation of the optimal transport problem, regularized optimal transport has received attention in recent years, which is a convex program to minimize the linear transport cost with an added convex regularizer. Sinkhorn optimal transport is the most prominent one regularized with negative Shannon entropy, leading to densely supported solutions, which are often undesirable in light of the interpretability of transport plans. In this paper, we report that a deformed entropy designed by q-algebra, a popular generalization of the standard algebra studied in Tsallis statistical mechanics, makes optimal transport solutions supported sparsely. This entropy with a deformation parameter q interpolates the negative Shannon entropy (q=1) and the squared 2-norm (q=0), and the solution becomes more sparse as q tends to zero. Our theoretical analysis reveals that a larger q leads to a faster convergence when optimized with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. In summary, the deformation induces a trade-off between the sparsity and convergence speed.


Targeting GRP78 suppresses oncogenic KRAS protein expression and reduces viability of cancer cells bearing various KRAS mutations.

  • Dat P Ha‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2022‎

KRAS is the most commonly mutated oncogene in human cancers with limited therapeutic options, thus there is a critical need to identify novel targets and inhibiting agents. The 78-kDa glucose-regulated protein GRP78, which is upregulated in KRAS cancers, is an essential chaperone and the master regulator of the unfolded protein response (UPR). Following up on our recent discoveries that GRP78 haploinsufficiency suppresses both KRASG12D-driven pancreatic and lung tumorigenesis, we seek to determine the underlying mechanisms. Here, we report that knockdown of GRP78 via siRNA reduced oncogenic KRAS protein level in human lung, colon, and pancreatic cancer cells bearing various KRAS mutations. This effect was at the post-transcriptional level and is independent of proteasomal degradation or autophagy. Moreover, targeting GRP78 via small molecule inhibitors such as HA15 and YUM70 with anti-cancer activities while sparing normal cells significantly suppressed oncogenic KRAS expression in vitro and in vivo, associating with onset of apoptosis and loss of viability in cancer cells bearing various KRAS mutations. Collectively, our studies reveal that GRP78 is a previously unidentified regulator of oncogenic KRAS expression, and, as such, augments the other anti-cancer activities of GRP78 small molecule inhibitors to potentially achieve general, long-term suppression of mutant KRAS-driven tumorigenesis.


Platelet-derived microvesicles induce calcium oscillations and promote VSMC migration via TRPV4.

  • Shan-Shan Li‎ et al.
  • Theranostics‎
  • 2021‎

Rationale: Abnormal migration of vascular smooth muscle cells (VSMCs) from the media to the interior is a critical process during the intimal restenosis caused by vascular injury. Here, we determined the role of platelet-derived microvesicles (PMVs) released by activated platelets in VSMC migration. Methods: A percutaneous transluminal angioplasty balloon dilatation catheter was used to establish vascular intimal injury. Collagen I was used to activate PMVs, mimicking collagen exposure during intimal injury. To determine the effects of PMVs on VSMC migration in vitro, scratch wound healing assays were performed. Fluorescence resonance energy transfer was used to detect variations of calcium dynamics in VSMCs. Results: Morphological results showed that neointimal hyperplasia was markedly increased after balloon injury of the carotid artery in rats, and the main component was VSMCs. PMVs significantly promoted single cell migration and wound closure in vitro. Fluorescence resonance energy transfer revealed that PMVs induced temporal and dynamic calcium oscillations in the cytoplasms of VSMCs. The influx of extracellular calcium, but not calcium from intracellular stores, was involved in the process described above. The channel antagonist GSK219 and specific siRNA revealed that a membrane calcium channel, transient receptor potential vanilloid 4 (TRPV4), participated in the calcium oscillations and VSMC migration induced by PMVs. Conclusions: TRPV4 participated in the calcium oscillations and VSMC migration induced by PMVs. PMVs and the related molecules might be novel therapeutic targets for vascular remodeling during vascular injury.


M2 microglia-derived extracellular vesicles promote white matter repair and functional recovery via miR-23a-5p after cerebral ischemia in mice.

  • Yongfang Li‎ et al.
  • Theranostics‎
  • 2022‎

Rationale: White matter repair is critical for the cognitive and neurological functional recovery after ischemic stroke. M2 microglia are well-documented to enhance remyelination and their extracellular vesicles (EVs) mediate cellular function after brain injury. However, whether M2 microglia-derived EVs could promote white matter repair after cerebral ischemia and its underlying mechanism are largely unknown. Methods: EVs were isolated from IL-4 treated microglia (M2-EVs) and untreated microglia (M0-EVs). Adult ICR mice subjected to 90-minute transient middle cerebral artery occlusion received intravenous EVs treatment for seven consecutive days. Brain atrophy volume, neurobehavioral tests were examined within 28 days following ischemia. Immunohistochemistry, myelin transmission electron microscope and compound action potential measurement were performed to assess white matter structural remodeling, functional repair and oligodendrogenesis. The effects of M2-EVs on oligodendrocyte precursor cells (OPCs) were also examined in vitro. EVs' miRNA sequencing, specific miR-23a-5p knockdown in M2-EVs and luciferase reporter assay were used to explore the underlying mechanism. Results: M2-EVs reduced brain atrophy volume, promoted functional recovery, oligodendrogenesis and white matter repair in vivo, increased OPC proliferation, survival and differentiation in vitro. miR-23a-5p was enriched in M2-EVs and could promote OPC proliferation, survival and maturation, while knocking down miR-23a-5p in M2-EVs reversed the beneficial effects of M2-EVs both in vitro and in vivo. Luciferase reporter assay showed that miR-23a-5p directly targeted Olig3. Conclusion: Our results demonstrated that M2 microglia could communicate to OPCs through M2-EVs and promote white matter repair via miR-23a-5p possibly by directly targeting Olig3 after ischemic stroke, suggesting M2-EVs is a novel and promising therapeutic strategy for white matter repair in stroke and demyelinating disease.


Treatment and control of modifiable cardiovascular risk factors among patients with diabetes mellitus and hypertension in Inner Mongolia: A cross-sectional study.

  • Yanqing Bi‎ et al.
  • Journal of clinical hypertension (Greenwich, Conn.)‎
  • 2021‎

The authors assessed treatment and control of blood glucose, blood pressure (BP), and blood lipids among patients from Inner Mongolia with diabetes mellitus (DM) and hypertension (HTN) and identified the modifiable factors associated with treatment and achievement of blood glucose, BP, and blood lipid targets. The authors used a multistage stratified cluster sampling method according to geographical location and level of economic development in Inner Mongolia. Among patients with DM and HTN, the crude rates of fasting plasma glucose (FPG) treatment and control was 30.76% and 4.73%, respectively. Crude rates of BP treatment and control were 50.81% and 8.70%, respectively. The authors found that treatment rates of HTN and DM and control rates of BP and FPG showed a gradually increasing trend with increased age. Among patients with DM and HTN, the likelihood of treatment for HTN and DM was significantly increased among participants who were older, non-Mongolian, male, obese, smokers, and those with previous cardiovascular disease. The authors found that control of BP, FPG, and low-density lipoprotein cholesterol was far from optimal among study participants. Medical and health departments in Inner Mongolia should take appropriate measures to reduce the burden of DM and HTN in the population, such as by promoting and improving the quality of HTN and DM treatment to achieve control goals and reduce the risk of cardiovascular disease.


Multi-Omics Database Analysis of Aminoacyl-tRNA Synthetases in Cancer.

  • Justin Wang‎ et al.
  • Genes‎
  • 2020‎

Aminoacyl-tRNA synthetases (aaRSs) are key enzymes in the mRNA translation machinery, yet they possess numerous non-canonical functions developed during the evolution of complex organisms. The aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are continually being implicated in tumorigenesis, but these connections are often limited in scope, focusing on specific aaRSs in distinct cancer subtypes. Here, we analyze publicly available genomic and transcriptomic data on human cytoplasmic and mitochondrial aaRSs across many cancer types. As high-throughput technologies have improved exponentially, large-scale projects have systematically quantified genetic alteration and expression from thousands of cancer patient samples. One such project is the Cancer Genome Atlas (TCGA), which processed over 20,000 primary cancer and matched normal samples from 33 cancer types. The wealth of knowledge provided from this undertaking has streamlined the identification of cancer drivers and suppressors. We examined aaRS expression data produced by the TCGA project and combined this with patient survival data to recognize trends in aaRSs' impact on cancer both molecularly and prognostically. We further compared these trends to an established tumor suppressor and a proto-oncogene. We observed apparent upregulation of many tRNA synthetase genes with aggressive cancer types, yet, at the individual gene level, some aaRSs resemble a tumor suppressor while others show similarities to an oncogene. This study provides an unbiased, overarching perspective on the relationship of aaRSs with cancers and identifies certain aaRS family members as promising therapeutic targets or potential leads for developing biological therapy for cancer.


Seryl-tRNA synthetase promotes translational readthrough by mRNA binding and involvement of the selenocysteine incorporation machinery.

  • Ze Liu‎ et al.
  • Nucleic acids research‎
  • 2023‎

Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.


The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones.

  • Hongyu Zhang‎ et al.
  • Plant communications‎
  • 2024‎

Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.


Global trends in poliomyelitis research over the past 20 years: A bibliometric analysis.

  • Qi Liu‎ et al.
  • Human vaccines & immunotherapeutics‎
  • 2023‎

Poliomyelitis is an acute infectious disease caused by poliovirus. This bibliometric analysis aims to examine the status of poliomyelitis research in the past 20 years. Information regarding polio research was obtained from the Web of Science Core Collection database. CiteSpace, VOSviewer, and Excel were used to perform visual and bibliometric analysis with respect to countries/regions, institutions, authors, journals and keywords. A total of 5,335 publications on poliomyelitis were published from 2002 to 2021. The USA was the county with the majority of publications. Additionally, the most productive institution was the Centers for Disease Control and Prevention. Sutter, RW produced the most papers and had the most co-citations. Vaccine was the journal with the most polio-related publications and citations. The most common keywords were mainly about polio immunology research ("polio," "immunization," "children," "eradication" and "vaccine"). Our study is helpful for identifying research hotspots and providing direction for future research on poliomyelitis.


Endocannabinoids, endocannabinoid-like compounds and cortisone in head hair of health care workers as markers of stress and resilience during the early COVID-19 pandemic.

  • Ingeborg Biener‎ et al.
  • Translational psychiatry‎
  • 2024‎

The pandemic caused by SARS-CoV-2 impacted health systems globally, creating increased workload and mental stress upon health care workers (HCW). During the first pandemic wave (March to May 2020) in southern Germany, we investigated the impact of stress and the resilience to stress in HCW by measuring changes in hair concentrations of endocannabinoids, endocannabinoid-like compounds and cortisone. HCW (n = 178) recruited from multiple occupation and worksites in the LMU-University-Hospital in Munich were interviewed at four interval visits to evaluate mental stress associated with the COVID-19 pandemic. A strand of hair of up to 6 cm in length was sampled once in May 2020, which enabled retrospective individual stress hormone quantifications during that aforementioned time period. Perceived anxiety and impact on mental health were demonstrated to be higher at the beginning of the COVID-19 pandemic and decreased significantly thereafter. Resilience was stable over time, but noted to be lower in women than in men. The concentrations of the endocannabinoid anandamide (AEA) and the structural congeners N-palmitoylethanolamide (PEA), N-oleoylethanolamide (OEA) and N-stearoylethanolamide (SEA) were noted to have decreased significantly over the course of the pandemic. In contrast, the endocannabinoid 2-arachidonoylglycerol (2-AG) levels increased significantly and were found to be higher in nurses, laboratory staff and hospital administration than in physicians. PEA was significantly higher in subjects with a higher resilience but lower in subjects with anxiety. SEA was also noted to be reduced in subjects with anxiety. Nurses had significantly higher cortisone levels than physicians, while female subjects had significant lower cortisone levels than males. Hair samples provided temporal and measurable objective psychophysiological-hormonal information. The hair endocannabinoids/endocannabinoid-like compounds and cortisone correlated to each other and to professions, age and sex quite differentially, relative to specific periods of the COVID-19 pandemic.


Neddylation requires glycyl-tRNA synthetase to protect activated E2.

  • Zhongying Mo‎ et al.
  • Nature structural & molecular biology‎
  • 2016‎

Neddylation is a post-translational modification that controls the cell cycle and proliferation by conjugating the ubiquitin-like protein NEDD8 to specific targets. Here we report that glycyl-tRNA synthetase (GlyRS), an essential enzyme in protein synthesis, also plays a critical role in neddylation. In human cells, knockdown of GlyRS, but not knockdown of a different tRNA synthetase, decreased the global level of neddylation and caused cell-cycle abnormality. This function of GlyRS is achieved through direct interactions with multiple components of the neddylation pathway, including NEDD8, E1, and E2 (Ubc12). Using various structural and functional approaches, we show that GlyRS binds the APPBP1 subunit of E1 and captures and protects activated E2 (NEDD8-conjugated Ubc12) before the activated E2 reaches a downstream target. Therefore, GlyRS functions as a chaperone that critically supports neddylation. This function is probably conserved in all eukaryotic GlyRS enzymes and may contribute to the strong association of GlyRS with cancer progression.


Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha.

  • Janine Weber‎ et al.
  • eLife‎
  • 2016‎

The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA localization. Pur-alpha-deficient mice die after birth with pleiotropic neuronal defects. Here, we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide-repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: