Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

A Novel Type-I Interferon Family, Bovine Interferon-Chi, Is Involved in Positive-Feedback Regulation of Interferon Production.

  • Yongli Guo‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Interferon-chi (IFN-χ) is a type of function-unknown IFN. IFN-χ in bovines (BoIFN-χ) has evolved as a multigene family. This family comprises four IFN-χ subtypes, two of which are functional genes, which we demonstrated to (i) have antiviral and antiproliferative activities, (ii) be highly sensitive to trypsin, and (iii) remain stable with changes in pH and temperature. BoIFN-χ is a key intermediate in antiviral response, PAbs against BoIFN-χs could downregulate the transcriptional activation of ISGs induced by poly(I:C), and BoIFN-χs could be induced upon virus infection at the early and late phase. Additionally, BoIFN-χs bind with type-I IFN receptors, induce transcription of interferon regulatory factor 7 (IRF7), interferon-stimulated genes (ISGs), and type-I IFNs as well as myxovirus resistance protein 1 (Mx1) expression. Expression of ISGs and activation of IFN-stimulated response element (ISRE) induced with BoIFN-χs could be downregulated significantly by the Janus kinase (JAK) 1 and signal transducers and activators of transcription (STAT) 1 inhibitor. The promoters of BoIFN-β, nuclear factor-kappa B, and ISRE could be activated with BoIFN-χs, and the BoIFN-χ promoter could be activated by other type-I IFNs. Overall, BoIFN-χ could be induced with virus infection and signal through the JAK-STAT pathway to form a positive-feedback regulation of IFN production. These findings may facilitate further research on the role of IFN-χ in innate immune responses.


Predictive value of miRNA-126 on in-stent restenosis in patients with coronary heart disease: A protocol for meta-analysis and bioinformatics analysis.

  • Xianke Qiu‎ et al.
  • Medicine‎
  • 2021‎

In-stent restenosis (ISR) is one of the most important complications and impacts the long-term effects after percutaneous coronary intervention (PCI) in patients with coronary heart disease (CHD). Related studies have revealed that microRNA (miRNA) can predict ISR in CHD patients. MiRNA-126 may be a potential biomarker for the diagnosis of ISR. However, the accuracy of miRNA-126 in the diagnosis of ISR is still controversial. Therefore, this study carried out meta-analysis to further evaluate the accuracy of miRNA-126 in the diagnosis of ISR. At the same time, bioinformatics is used to predict the target genes and miRNA-126 may be involved in regulation, so as to provide theoretical support for the precise treatment of CHD.


Predictive value of miRNA-21 on coronary restenosis after percutaneous coronary intervention in patients with coronary heart disease: A protocol for systematic review and meta-analysis.

  • Haiyue Dai‎ et al.
  • Medicine‎
  • 2021‎

Evidence reveals that microRNA (miRNA) can predict coronary restenosis in patients suffering from coronary heart disease (CHD) after percutaneous coronary intervention (PCI). Perhaps, miRNA-21 is a promising biomarker for the diagnosis of coronary restenosis after PCI. However, the accuracy of miRNA-21 has not been systematically evaluated. Therefore, it is necessary to perform meta-analysis to certify the diagnostic values of miRNA-21 on coronary restenosis after PCI.


Identification and characterization of a rabbit novel IFN-α unlocated in genome.

  • Mingchun Gao‎ et al.
  • Developmental and comparative immunology‎
  • 2018‎

The multigene family of rabbit IFN-α (RbIFN-α) is located on chromosome 1, which shows seven functional genes in type I IFN locus. A novel RbIFN-α that remains unlocated in the rabbit genome was amplified and designated as the first novel rabbit IFN-α (RbIFN-αNov1), which possesses the typical molecular characteristics of type I IFNs and could be induced in RK-13 cells and peripheral blood mononuclear cells. After the mature peptide of RbIFN-αNov1 was expressed, its antiviral activity, physicochemical characteristics, and cytotoxicity were determined in vitro. Results indicated that RbIFN-αNov1 exerted a high specific antiviral activity against VSV and a low cytotoxic effect on RK-13 cells. RbIFN-αNov1 showed high sensitivity to trypsin and remained relatively stable after acid, alkali, or heat treatment. RbIFN-αNov1 could induce Mx1 expression on RK-13 cells and activate the NF-κB, ISRE and BoIFN-β promoter activities on bovine testicular cells. Overall, our research on RbIFN-αNov1 not only enriches the knowledge about rabbit IFNs but also makes RbIFN-αNov1 have the potential to be used as an effective therapeutic agent for rabbit viral diseases.


Construction of BHV-1 UL41 Defective Virus Using the CRISPR/Cas9 System and Analysis of Viral Replication Properties.

  • Haiyue Dai‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2022‎

Bovine herpesvirus type 1 (BHV-1) is a neurotropic herpesvirus that causes infectious rhinotracheitis and vulvovaginitis in cattle. The virion host shutoff protein encoded by the BHV-1 UL41 gene is highly conserved in the Alphaherpesvirinae subfamily. This protein can degrade viral and host messenger RNA (mRNA) to interrupt host defense and facilitate the rapid proliferation of BHV-1. However, studies on the BHV-1 UL41 gene are limited, and BHV-1 defective virus construction using the CRISPR/Cas9 system is somewhat challenging. In this study, we rapidly constructed a BHV-1 UL41-deficient strain using the CRISPR/Cas9 system in BL primary bovine-derived cells. BHV-1 UL41-defective mutants were screened by Western blot analysis using specific polyclonal antibodies as the primary antibodies. During the isolation and purification of the defective strain, a mixed virus pool edited by an efficient single-guide RNA (sgRNA) showed a plaque number reduction. Viral growth property assessment showed that BHV-1 UL41 was dispensable for replication, but the UL41-defective strain exhibited early and slowed viral replication. Furthermore, the BHV-1 UL41-deficient strain exhibited enhanced sensitivity to temperature and acidic environments. The BHV-1 UL41-deficient strain regulated viral and host mRNA levels to affect viral replication.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: