Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-β-dependent epithelial to mesenchymal transition.

  • Haiying Tang‎ et al.
  • The Journal of surgical research‎
  • 2015‎

Epithelial to mesenchymal transition (EMT) of alveolar epithelial cells occurs in lung fibrotic diseases. Tanshinone IIA (Tan IIA) has been reported to exert anti-inflammatory effects in pulmonary fibrosis. Nonetheless, whether Tan IIA affects lung fibrosis-related EMT remains unknown and requires for further investigations.


Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis in rats.

  • Huanyu He‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Idiopathic pulmonary fibrosis is a chronic and progressive fibrotic lung disorder with unknown etiology and a high mortality rate. Tanshinone ⅡA (Tan ⅡA) is a lipophilic diterpene extracted from the Chinese herb Salvia miltiorrhiza Bunge with diverse biological functions. The present study was conducted to evaluate the effects of Tan ⅡA on bleomycin (BLM)‑induced pulmonary fibrosis in rats. Rats received an intraperitoneal injection of Tan ⅡA and normal rats were used as controls. Severe pulmonary edema, inflammation and fibrosis were observed in the BLM‑treated rats and the counts of total cells, neutrophils and lymphocytes were significantly increased in the bronchoalveolar lavage fluids of those rats. These pathological changes were markedly attenuated by subsequent treatment with Tan ⅡA. In addition, BLM‑induced increased expression of tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6, cyclooxygenase‑2, prostaglandin E2, malondialdehyde, inducible nitric oxide synthase and nitric oxide in rats, which was also suppressed by Tan ⅡA injection. The present findings suggest therapeutic potential of Tan ⅡA for pulmonary fibrosis.


Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing.

  • Xin Cai‎ et al.
  • PloS one‎
  • 2014‎

Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.


Oligodendrocyte lineage and subventricular zone response to traumatic axonal injury in the corpus callosum.

  • Genevieve M Sullivan‎ et al.
  • Journal of neuropathology and experimental neurology‎
  • 2013‎

Traumatic brain injury frequently causes traumatic axonal injury (TAI) in white matter tracts. Experimental TAI in the corpus callosum of adult mice was used to examine the effects on oligodendrocyte lineage cells and myelin in conjunction with neuroimaging. The injury targeted the corpus callosum over the subventricular zone, a source of neural stem/progenitor cells. Traumatic axonal injury was produced in the rostral body of the corpus callosum by impact onto the skull at the bregma. During the first week after injury, magnetic resonance diffusion tensor imaging showed that axial diffusivity decreased in the corpus callosum and that corresponding regions exhibited significant axon damage accompanied by hypertrophic microglia and reactive astrocytes. Oligodendrocyte progenitor proliferation increased in the subventricular zone and corpus callosum. Oligodendrocytes in the corpus callosum shifted toward upregulation of myelin gene transcription. Plp/CreER(T):R26IAP reporter mice showed normal reporter labeling of myelin sheaths 0 to 2 days after injury but labeling was increased between 2 and 7 days after injury. Electron microscopy revealed axon degeneration, demyelination, and redundant myelin figures. These findings expand the cell types and responses to white matter injuries that inform diffusion tensor imaging evaluation and identify pivotal white matter changes after TAI that may affect axon vulnerability vs. recovery after brain injury.


Development of a Functional Glomerulus at the Organ Level on a Chip to Mimic Hypertensive Nephropathy.

  • Mengying Zhou‎ et al.
  • Scientific reports‎
  • 2016‎

Glomerular hypertension is an important factor exacerbating glomerular diseases to end-stage renal diseases because, ultimately, it results in glomerular sclerosis (especially in hypertensive and diabetic nephropathy). The precise mechanism of glomerular sclerosis caused by glomerular hypertension is unclear, due partly to the absence of suitable in vitro or in vivo models capable of mimicking and regulating the complex mechanical forces and/or organ-level disease processes. We developed a "glomerulus-on-a-chip" (GC) microfluidic device. This device reconstitutes the glomerulus with organ-level glomerular functions to create a disease model-on-a chip that mimics hypertensive nephropathy in humans. It comprises two channels lined by closely opposed layers of glomerular endothelial cells and podocytes that experience fluid flow of physiological conditions to mimic the glomerular microenvironment in vivo. Our results revealed that glomerular mechanical forces have a crucial role in cellular cytoskeletal rearrangement as well as the damage to cells and their junctions that leads to increased glomerular leakage observed in hypertensive nephropathy. Results also showed that the GC could readily and flexibly meet the demands of a renal-disease model. The GC could provide drug screening and toxicology testing, and create potential new personalized and accurate therapeutic platforms for glomerular disease.


Selective deletion of SHIP-1 in hematopoietic cells in mice leads to severe lung inflammation involving ILC2 cells.

  • Xujun Ye‎ et al.
  • Scientific reports‎
  • 2021‎

Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP-1) regulates the intracellular levels of phosphotidylinositol-3, 4, 5-trisphosphate, a phosphoinositide 3-kinase (PI3K) product. Emerging evidence suggests that the PI3K pathway is involved in allergic inflammation in the lung. Germline or induced whole-body deletion of SHIP-1 in mice led to spontaneous type 2-dominated pulmonary inflammation, demonstrating that SHIP-1 is essential for lung homeostasis. However, the mechanisms by which SHIP-1 regulates lung inflammation and the responsible cell types are still unclear. Deletion of SHIP-1 selectively in B cells, T cells, dendritic cells (DC) or macrophages did not lead to spontaneous allergic inflammation in mice, suggesting that innate immune cells, particularly group 2 innate lymphoid cells (ILC2 cells) may play an important role in this process. We tested this idea using mice with deletion of SHIP-1 in the hematopoietic cell lineage and examined the changes in ILC2 cells. Conditional deletion of SHIP-1 in hematopoietic cells in Tek-Cre/SHIP-1 mice resulted in spontaneous pulmonary inflammation with features of type 2 immune responses and airway remodeling like those seen in mice with global deletion of SHIP-1. Furthermore, when compared to wild-type control mice, Tek-Cre/SHIP-1 mice displayed a significant increase in the number of IL-5/IL-13 producing ILC2 cells in the lung at baseline and after stimulation by allergen Papain. These findings provide some hints that PI3K signaling may play a role in ILC2 cell development at baseline and in response to allergen stimulation. SHIP-1 is required for maintaining lung homeostasis potentially by restraining ILC2 cells and type 2 inflammation.


A multi-omics approach based on 1H-NMR metabonomics combined with target protein analysis to reveal the mechanism of RIAISs on cervical carcinoma patients.

  • Chai Yanlan‎ et al.
  • Aging‎
  • 2022‎

Cervical carcinoma (CC) is the fourth most common cancer in females and radiotherapy is always as the definitive therapy for cervical cancer patients who are not suitable for surgery. Radiation-induced acute intestinal symptoms (RIAISs) occur in 50-80% of cervical cancer patients. Some research shows that RIAISs may relate to inflammatory reaction by radiotherapy but the action mechanism is also not clearly and the details of the molecular mechanism are still urgently needed. In this paper, basing on 1H-NMR metabonomic and bioinformatics analysis, an integrated multi-omics analysis including metabonomics and bioinformatics was performed. We propose a hypothesis about pathogenic mechanism on RIAISs and proofed it through western-blot. Our results indicated significant dysregulation of metabolic pathways in RIAIS patients. Most importantly, we found that RIAISs were associated p53 and PI3K-AKT pathway.


Linear brain measurement: a new screening method for cognitive impairment in elderly patients with cerebral small vessel disease.

  • Jing Wang‎ et al.
  • Frontiers in neurology‎
  • 2024‎

The old adults have high incidence of cognitive impairment, especially in patients with cerebral small vessel disease (CSVD). Cognitive impairment is not easy to be detected in such populations. We aimed to develop clinical prediction models for different degrees of cognitive impairments in elderly CSVD patients based on conventional imaging and clinical data to determine the better indicators for assessing cognitive function in the CSVD elderly.


Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6.

  • Nan Wang‎ et al.
  • PloS one‎
  • 2012‎

Mesothelial cell injury plays an important role in peritoneal fibrosis. Present clinical therapies aimed at alleviating peritoneal fibrosis have been largely inadequate. Mesenchymal stem cells (MSCs) are efficient for repairing injuries and reducing fibrosis. This study was designed to investigate the effects of MSCs on injured mesothelial cells and peritoneal fibrosis.


Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats.

  • Lili Gao‎ et al.
  • Frontiers in pharmacology‎
  • 2015‎

Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA), a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM)-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition, and activation of transforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.


Novel mechanism for mesenchymal stem cells in attenuating peritoneal adhesion: accumulating in the lung and secreting tumor necrosis factor α-stimulating gene-6.

  • Nan Wang‎ et al.
  • Stem cell research & therapy‎
  • 2012‎

We previously found that mesenchymal stem cells (MSCs) injected intravenously could attenuate peritoneal adhesion by secreting tumor necrosis alpha-stimulating gene (TSG)-6, while MSCs injected intraperitoneally could not. However, the underlying mechanism remains unclear. This study was designed to investigate the means by which MSCs exert their effects.


An Equation Based on Fuzzy Mathematics to Assess the Timing of Haemodialysis Initiation.

  • Ying Liu‎ et al.
  • Scientific reports‎
  • 2019‎

In order to develop an equation that integrates multiple clinical factors including signs and symptoms associated with uraemia to assess the initiation of dialysis, we conducted a retrospective cohort study including 25 haemodialysis centres in Mainland China. Patients with ESRD (n = 1281) who commenced haemodialysis from 2008 to 2011 were enrolled in the development cohort, whereas 504 patients who began haemodialysis between 2012 and 2013 were enrolled in the validation cohort comprised. An artificial neural network model was used to select variables, and a fuzzy neural network model was then constructed using factors affecting haemodialysis initiation as input variables and 3-year survival as the output variable. A logistic model was set up using the same variables. The equation's performance was compared with that of the logistic model and conventional eGFR-based assessment. The area under the bootstrap-corrected receiver-operating characteristic curve of the equation was 0.70, and that of two conventional eGFR-based assessments were 0.57 and 0.54. In conclusion, the new equation based on Fuzzy mathematics, covering laboratory and clinical variables, is more suitable for assessing the timing of dialysis initiation in a Chinese ESRD population than eGFR, and may be a helpful tool to quantitatively evaluate the initiation of haemodialysis.


5-ASA-loaded SiO2 nanoparticles-a novel drug delivery system targeting therapy on ulcerative colitis in mice.

  • Haiying Tang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The targeting of 5-aminosalicylic acid (5-ASA), a first-line therapeutic agent for mild to moderate active ulcerative colitis (UC), to the site of inflammation has remained a challenge and an unmet requirement in the treatment of UC. However, nanoscale carriers for targeted drug delivery are promising for pharmacotherapy, and nanoparticles improve the pharmacokinetics of the loaded therapeutics based on their physical properties. To design and prepare 5‑ASA‑loaded silicon dioxide nanoparticles (5‑ASA‑SiO2 NPs), a micro‑emulsion method was conducted, and their respective therapeutic effects were validated in a mouse model of UC. Cytotoxicity of 5‑ASA‑SiO2 NPs was detected in vitro using the Cell Counting Kit‑8 method. The therapeutic effect of 5‑ASA‑SiO2 NPs was assessed based on their disease activity index (DAI), colon histopathology, myeloperoxidase (MPO) and levels of tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6). SiO2 NPs were successfully prepared, and cytotoxicity of 5‑ASA‑SiO2 NPs was identified as being similar to 5‑ASA and SiO2 NPs. DAI and colonic histopathology scores in the normal dosage, high dosage and the 5‑ASA‑SiO2 NP groups demonstrated a significant improvement when compared with the model group. DAI in the high dosage and 5‑ASA‑SiO2 NP groups also demonstrated a significant improvement when compared with the normal dosage group. However, MPO, serum IL‑6 and TNF‑α levels in normal dosage, high dosage and 5‑ASA‑SiO2 NPs groups were significantly lower than in the model group, and these indexes in the high dosage group and 5‑ASA‑SiO2 NP group were significantly lower than that in the normal dosage group. Expression of IL‑6 and TNF‑α mRNA in colonic mucosa in the normal dosage, high dosage and 5‑ASA‑SiO2 NP group was significantly lower than that in the model group. Colonic mucosal IL‑6 and TNF‑α mRNA expression in the high dosage and 5‑ASA‑SiO2 NP groups was significantly lower than that in the normal dosage group (P<0.05). In conclusion, 5‑ASA‑SiO2 NPs are a selective drug release system that target the inflamed colon, characteristics of UC, and can greatly increase therapeutic efficacy in UC.


The relationships between LncRNA NNT-AS1, CRP, PCT and their interactions and the refractory mycoplasma pneumoniae pneumonia in children.

  • Ping Chen‎ et al.
  • Scientific reports‎
  • 2021‎

To investigate the relationships between LncRNA NNT-AS1, CRP, PCT and their interactions and the refractory mycoplasma pneumoniae pneumonia (RMPP) in children. Serum levels of LncRNA NNT-AS1 of RMPP and non-RMPP (NRMPP) patients were detected by real-time PCR, and were analyzed together with serum c-reactive protein (CRP) and procalcitonin (PCT). Correlations between LncRNA NNT-AS1 and CRP and PCT were analyzed by Pearson correlation test. The ROC curve was used to analyze the potential of LncRNA NNT-AS1, CRP and PCT as biomarkers for predicting RMPP. Logistic regression crossover model and the Excel compiled by Andersson et al. were used to analyze the interactions among the biomarkers. We found that LncRNA NNT-AS1, CRP and PCT were all highly expressed in patients with RMPP. LncRNA NNT-AS1 could positively correlate with the expressions of CRP and PCT, and jointly promote the occurrence of RMPP. The combined diagnosis of LncRNA NNT-AS1, CRP and PCT could predict the occurrence of RMPP.


Comparison of carbon footprint and net ecosystem carbon budget under organic material retention combined with reduced mineral fertilizer.

  • Ying Liu‎ et al.
  • Carbon balance and management‎
  • 2021‎

Excessive application of chemical fertilizer has resulted in lower nitrogen uptake and utilization efficiency of crops, decreasing soil fertility, increasing greenhouse gas emissions, and worse environmental pollution. Organic material retention is regard as the key to solve these problems. The objective of this study is to conduct an assessment of carbon budget under Astragalus sinicus L. and rice straw retention combined with reduced mineral fertilizer based on the 2-year field experiment in a paddy field in the south of China. The experiment was randomized complete block design including four treatments with triplicates: control CK (winter follow, 120 kg ha-1 N fertilizer for each rice season) and three treatments with Astragalus sinicus L. and rice straw retention named RA, RB, and RC (reduced N fertilizer by 15%, 27.5%, and 40% in each rice season).


Association between Dietary Carbohydrate Intake and Control of Blood Pressure in Patients with Essential Hypertension.

  • Yiqing Jiang‎ et al.
  • Healthcare (Basel, Switzerland)‎
  • 2022‎

Both high and low percentages of carbohydrate diets were associated with increased mortality and new-onset hypertension. However, few studies have aggregated to explore the association between carbohydrate intake and blood pressure (BP) control in patients with hypertension. This study aimed to explore the association between carbohydrate-to-energy proportion (CEP) and the rate of poorly controlled BP in patients with hypertension.


The effect of core fucosylation-mediated regulation of multiple signaling pathways on lung pericyte activation and fibrosis.

  • Ying Sun‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2019‎

The main event in the progression of pulmonary fibrosis is the appearance of myofibroblasts. Recent evidence supports pericytes as a major source of myofibroblasts. TGFβ/Smad2/3 and PDGF/Erk signaling pathways are important for regulating pericyte activation. Previous studies have demonstrated that PDGFβR and TGFβR are modified by core fucosylation (CF) catalyzed by α-1,6-fucosyltransferase (FUT8). The aim of this study was to compare the effect of inhibiting CF versus the PDGFβR and TGFβR signaling pathways on pericyte activation and lung fibrosis. FUT8shRNA was used to knock down FUT8-mediated CF both in vivo and in isolated lung pericytes. The small molecule receptor antagonists, ST1571 (imatinib) and LY2109761, were used to block the PDGFβ/pErk and TGFβ/pSmad2/3 signaling pathways, respectively. Pericyte detachment and myofibroblastic transformation were assessed by immunofluorescence and Western blot. Histochemical and immunohistochemical staining were used to evaluate the effect of the intervention on pulmonary fibrosis. Our findings demonstrate that FUT8shRNA significantly blocked pericyte activation and the progression of pulmonary fibrosis, achieving intervention effects superior to the small molecule inhibitors. The PDGFβ and TGFβ pathways were simultaneously affected by the CF blockade. FUT8 expression was upregulated with the transformation of pericytes into myofibroblasts, and silencing FUT8 expression inhibited this transformation. In addition, there is a causal relationship between CF modification catalyzed by FUT8 and pulmonary fibrosis. Our findings suggest that FUT8 may be a novel therapeutic target for pulmonary fibrosis.


Analysis of intestinal flora and cognitive function in maintenance hemodialysis patients using combined 16S ribosome DNA and shotgun metagenome sequencing.

  • Qiuyi Gao‎ et al.
  • Aging clinical and experimental research‎
  • 2024‎

Cognitive impairment is widely prevalent in maintenance hemodialysis (MHD) patients, and seriously affects their quality of life. The intestinal flora likely regulates cognitive function, but studies on cognitive impairment and intestinal flora in MHD patients are lacking.


Inhibition of core fucosylation limits progression of diabetic kidney disease.

  • Ming Fang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

FUT8-mediated core fucosylation, which transfers a fucose residue from GDP-fucose to core-GlcNAc of the N-linked type glycoproteins, is crucial for signaling receptors function. Core fucosylation is involved in various biological processes such as cell proliferation, apoptosis, differentiation and immune regulation. Our previous studies demonstrated that inhibiting core fucosylation prevented renal interstitial fibrosis of UUO murine models, but its role in the development of diabetic kidney disease (DKD) remains unclear. This study aimed to clarify the protective effects and molecular mechanisms during the progress of DKD by inhibiting core fucosylation in vivo.


Bone marrow mesenchymal stem cell-derived exosomal miR-34c-5p ameliorates RIF by inhibiting the core fucosylation of multiple proteins.

  • Xuemei Hu‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2022‎

Renal interstitial fibrosis (RIF) is an incurable pathological lesion in chronic kidney diseases. Pericyte activation is the major pathological characteristic of RIF. Fibroblast and macrophage activation are also involved in RIF. Studies have revealed that core fucosylation (CF), an important post-translational modification of proteins, plays a key role in pericyte activation and RIF by regulating multiple profibrotic signaling pathways as a hub-like target. Here, we reveal that mesenchymal stem cell (MSC)-derived exosomes reside specifically in the injured kidney and deliver microRNA (miR)-34c-5p to reduce cellular activation and RIF by inhibiting CF. Furthermore, we showed that the CD81-epidermal growth factor receptor (EGFR) ligand-receptor complex aids the entry of exosomal miR-34c-5p into pericytes, fibroblasts, and macrophages. Altogether, our findings reveal a novel role of MSC-derived exosomes in inhibiting multicellular activation via CF and provide a potential intervention strategy for renal fibrosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: