Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28 papers

Gremlin promotes retinal pigmentation epithelial (RPE) cell proliferation, migration and VEGF production via activating VEGFR2-Akt-mTORC2 signaling.

  • Yuan Liu‎ et al.
  • Oncotarget‎
  • 2017‎

Retinopathy of prematurity (ROP) is characterized by late-phase pathologic retinal vasoproliferation. Gremlin is a novel vascular endothelial growth factors (VEGF) receptor 2 (VEGFR2) agonist and promotes angiogenic response. We demonstrated that gremlin expression was significantly increased in retinas of ROP model mice, which was correlated with VEGF upregulation. In retinal pigmentation epithelial (RPE) cells, gremlin activated VEGFR2-Akt-mTORC2 (mammalian target of rapamycin complex 2) signaling, and promoted cell proliferation, migration and VEGF production. VEGFR inhibition (by SU5416) or shRNA knockdown almost abolished gremlin-mediated pleiotropic functions in RPE cells. Further, pharmacological inhibition of Akt-mTOR, or shRNA knockdown of key mTORC2 component (Rictor or Sin1) also attenuated gremlin-exerted activities in RPE cells. We conclude that gremlin promotes RPE cell proliferation, migration and VEGF production possibly via activating VEGFR2-Akt-mTORC2 signaling. Gremlin could be a novel therapeutic target of ROP or other retinal vasoproliferation diseases.


Disparate Regulatory Mechanisms Control Fat3 and P75NTR Protein Transport through a Conserved Kif5-Interaction Domain.

  • Haixia Cheng‎ et al.
  • PloS one‎
  • 2016‎

Directed transport delivers proteins to specific cellular locations and is one mechanism by which cells establish and maintain polarized cellular architectures. The atypical cadherin Fat3 directs the polarized extension of dendrites in retinal amacrine cells by influencing the distribution of cytoskeletal regulators during retinal development, however the mechanisms regulating the distribution of Fat3 remain unclear. We report a novel Kinesin/Kif5 Interaction domain (Kif5-ID) in Fat3 that facilitates Kif5B binding, and determines the distribution of Fat3 cytosolic domain constructs in neurons and MDCK cells. The Kif5-ID sequence is conserved in the neurotrophin receptor P75NTR, which also binds Kif5B, and Kif5-ID mutations similarly result in P75NTR mislocalization. Despite these similarities, Kif5B-mediated protein transport is differentially regulated by these two cargos. For Fat3, the Kif5-ID is regulated by alternative splicing, and the timecourse of splicing suggests that the distribution of Fat3 may switch between early and later stages of retinal development. In contrast, P75NTR binding to Kif5B is enhanced by tyrosine phosphorylation and thus has the potential to be dynamically regulated on a more rapid time scale.


The p300 Inhibitor A-485 Exerts Antitumor Activity in Growth Hormone Pituitary Adenoma.

  • Chenxing Ji‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2022‎

Growth hormone pituitary adenoma (GHPA), a major subtype of pituitary adenoma (PA), can lead to progressive somatic disfigurement, multiple complications, and even increased mortality. The efficacy of current treatments is limited; thus, a novel pharmacological treatment is urgently needed. As a histone acetyltransferase (HAT) coactivator, p300 can regulate the transcription of several genes that are crucial for PA tumorigenesis and progression. However, the role of p300 and its catalytic inhibitor in GHPA is still unclear.


Digital image analysis allows objective stratification of patients with silent PIT1-lineage pituitary neuroendocrine tumors.

  • Jiangyan Zhao‎ et al.
  • The journal of pathology. Clinical research‎
  • 2023‎

Studies describing the clinical presentation and prognosis of patients with silent PIT1 (pituitary specific transcription factor)-lineage pituitary neuroendocrine tumors (PitNETs) are rare. We identified patients with positive PIT1 tumor staining but without evidence of hormone hypersecretion at a tertiary center. Clusters were obtained according to cell morphology and immunostaining from each patient's digitally segmented whole slide image. We compared the clinical presentations, radiological features, and prognoses of the different clusters. We identified 146 patients (68 male, 42.9 ± 14.1 years old) with silent PIT1-lineage PitNETs. Morphology clustering suggested that tumors with large nuclei and apparent eccentricity were associated with a higher proportion of aggressiveness and a higher hazard of recurrence [hazard ratio (HR): 2.64, (95% CI, 1.06-6.55), p = 0.037]. Immunohistochemical clustering suggested that tumors with thyroid stimulating hormone (TSH) staining or all negative PIT1-lineage hormones were associated with a higher proportion of aggressiveness and a higher risk of recurrence [HR: 12.4, (95% CI, 1.60-93.5), p = 0.015]. We obtained three-tier risk profiles by combining morphological and immunohistochemical clustering. Patients with the high-risk profile presented the highest recurrence rate compared with those in the medium-risk and low-risk profiles [HR: 3.54, (95% CI, 1.40-8.93), p = 0.002]. In conclusion, digital image analysis based on cell morphology and immunohistochemical staining allows objective stratification of patients with silent PIT1-lineage tumors. Typical morphological characteristics of high-risk tumors are large tumor nuclei and high eccentricity, and typical immunostaining characteristics are TSH staining or negative staining for all PIT1-lineage hormones.


MRI-derived radiomics assessing tumor-infiltrating macrophages enable prediction of immune-phenotype, immunotherapy response and survival in glioma.

  • Di Chen‎ et al.
  • Biomarker research‎
  • 2024‎

The tumor immune microenvironment can influence the prognosis and treatment response to immunotherapy. We aimed to develop a non-invasive radiomic signature in high-grade glioma (HGG) to predict the absolute density of tumor-associated macrophages (TAMs), the preponderant immune cells in the microenvironment of HGG. We also aimed to evaluate the association between the signature, and tumor immune phenotype as well as response to immunotherapy.


Hepatoprotective effect of 17β-estradiol as antioxidant modulators against stress damage.

  • Serpil Can‎ et al.
  • Hepatitis monthly‎
  • 2015‎

Liver is one of the most important organs affected by exercise. According to the literature a few study to date has investigated the effects of estrogen supplementation on exercise-induced oxidative stress in liver tissue of rats.


Royal jelly modulates oxidative stress and apoptosis in liver and kidneys of rats treated with cisplatin.

  • Ali Karadeniz‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2011‎

Cisplatin (CDDP) is one of the most active cytotoxic agents in the treatment of cancer and has adverse side effects such as nephrotoxicity and hepatotoxicity. The present study was designed to determine the effects of royal jelly (RJ) against oxidative stress caused by CDDP injury of the kidneys and liver, by measuring tissue biochemical and antioxidant parameters and investigating apoptosis immunohistochemically. Twenty-four Sprague Dawley rats were divided into four groups, group C: control group received 0.9% saline; group CDDP: injected i.p. with cisplatin (CDDP, 7 mg kg(-1) body weight i.p., single dose); group RJ: treated for 15 consecutive days by gavage with RJ (300 mg/kg/day); group RJ + CDDP: treated by gavage with RJ 15 days following a single injection of CDDP. Malondialdehyde (MDA) and glutathione (GSH) levels, glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities were determined in liver and kidney homogenates, and the liver and kidney were also histologically examined. RJ elicited a significant protective effect towards liver and kidney by decreasing the level of lipid peroxidation (MDA), elevating the level of GSH, and increasing the activities of GST, GSH-Px, and SOD. In the immunohistochemical examinations were observed significantly enhanced apoptotic cell numbers and degenerative changes by cisplatin, but these histological changes were lower in the liver and kidney tissues of RJ + CDDP group. Besides, treatment with RJ lead to an increase in antiapoptotic activity hepatocytes and tubular epithelium. In conclusion, RJ may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters and apoptotic activity.


MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition.

  • Gurkan Mollaoglu‎ et al.
  • Cancer cell‎
  • 2017‎

Loss of the tumor suppressors RB1 and TP53 and MYC amplification are frequent oncogenic events in small cell lung cancer (SCLC). We show that Myc expression cooperates with Rb1 and Trp53 loss in the mouse lung to promote aggressive, highly metastatic tumors, that are initially sensitive to chemotherapy followed by relapse, similar to human SCLC. Importantly, MYC drives a neuroendocrine-low "variant" subset of SCLC with high NEUROD1 expression corresponding to transcriptional profiles of human SCLC. Targeted drug screening reveals that SCLC with high MYC expression is vulnerable to Aurora kinase inhibition, which, combined with chemotherapy, strongly suppresses tumor progression and increases survival. These data identify molecular features for patient stratification and uncover a potential targeted treatment approach for MYC-driven SCLC.


BRD4 as a therapeutic target for nonfunctioning and growth hormone pituitary adenoma.

  • Chengzhang Shi‎ et al.
  • Neuro-oncology‎
  • 2020‎

Nonfunctioning pituitary adenoma (NFPA) and growth hormone pituitary adenoma (GHPA) are major subtypes of pituitary adenomas (PAs). The primary treatment is surgical resection. However, radical excision remains challenging, and few effective medical therapies are available. It is urgent to find novel targets for the treatment. Bromodomain-containing protein 4 (BRD4) is an epigenetic regulator that leads to aberrant transcriptional activation of oncogenes. Herein, we investigated the pathological role of BRD4 and evaluated the effectiveness of BRD4 inhibitors in the treatment of NFPA and GHPA.


Hyperphosphorylated PTEN exerts oncogenic properties.

  • Janine H van Ree‎ et al.
  • Nature communications‎
  • 2023‎

PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of β-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.


Single-cell sequencing identifies differentiation-related markers for molecular classification and recurrence prediction of PitNET.

  • Qilin Zhang‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Pituitary neuroendocrine tumor (PitNET) is one of the most common intracranial tumors with variable recurrence rate. Currently, the recurrence prediction is unsatisfying and can be improved by understanding the cellular origins and differentiation status. Here, to comprehensively reveal the origin of PitNET, we perform comparative analysis of single-cell RNA sequencing data from 3 anterior pituitary glands and 21 PitNETs. We identify distinct genes representing major subtypes of well and poorly differentiated PitNETs in each lineage. To further verify the predictive value of differentiation biomarkers, we include an independent cohort of 800 patients with an average follow-up of 7.2 years. In both PIT1 and TPIT lineages, poorly differentiated groups show significantly higher recurrence rates while well-differentiated groups show higher recurrence rates in SF1 lineage. Our findings reveal the possible origin and differentiation status of PitNET based on which new differentiation classification is proposed and verified to predict tumor recurrence.


Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma.

  • Hiromitsu Hatakeyama‎ et al.
  • PloS one‎
  • 2010‎

We hypothesized that chronic inhibition of epidermal growth factor receptor (EGFR) by cetuximab, a monoclonal anti-EGFR antibody, induces up-regulation of its ligands resulting in resistance and that microRNAs (miRs) play an important role in the ligand regulation in head and neck squamous cell carcinoma (HNSCC).


Gene expression signatures modulated by epidermal growth factor receptor activation and their relationship to cetuximab resistance in head and neck squamous cell carcinoma.

  • Elana J Fertig‎ et al.
  • BMC genomics‎
  • 2012‎

Aberrant activation of signaling pathways downstream of epidermal growth factor receptor (EGFR) has been hypothesized to be one of the mechanisms of cetuximab (a monoclonal antibody against EGFR) resistance in head and neck squamous cell carcinoma (HNSCC). To infer relevant and specific pathway activation downstream of EGFR from gene expression in HNSCC, we generated gene expression signatures using immortalized keratinocytes (HaCaT) subjected to ligand stimulation and transfected with EGFR, RELA/p65, or HRASVal12D.


Prognostic Model That Predicts Benefits of Adjuvant Radiotherapy in Patients With High Grade Meningioma.

  • Daijun Wang‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Adjuvant radiotherapy is the main treatment modality for high grade meningioma after surgical resection; however, recurrence and survival outcomes vary. The aim of this study was to create a new "prognostic score" that allows personalized recommendations for post-operative adjuvant radiotherapy in patients with high grade meningioma.


Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer.

  • Alex H Wagner‎ et al.
  • Nature communications‎
  • 2018‎

Nearly all patients with small cell lung cancer (SCLC) eventually relapse with chemoresistant disease. The molecular mechanisms driving chemoresistance in SCLC remain un-characterized. Here, we describe whole-exome sequencing of paired SCLC tumor samples procured at diagnosis and relapse from 12 patients, and unpaired relapse samples from 18 additional patients. Multiple somatic copy number alterations, including gains in ABCC1 and deletions in MYCL, MSH2, and MSH6, are identifiable in relapsed samples. Relapse samples also exhibit recurrent mutations and loss of heterozygosity in regulators of WNT signaling, including CHD8 and APC. Analysis of RNA-sequencing data shows enrichment for an ASCL1-low expression subtype and WNT activation in relapse samples. Activation of WNT signaling in chemosensitive human SCLC cell lines through APC knockdown induces chemoresistance. Additionally, in vitro-derived chemoresistant cell lines demonstrate increased WNT activity. Overall, our results suggest WNT signaling activation as a mechanism of chemoresistance in relapsed SCLC.


Human Thanatomicrobiome Succession and Time Since Death.

  • Gulnaz T Javan‎ et al.
  • Scientific reports‎
  • 2016‎

The thanatomicrobiome (thanatos, Greek for death) is a relatively new term and is the study of the microbes colonizing the internal organs and orifices after death. Recent scientific breakthroughs in an initial study of the thanatomicrobiome have revealed that a majority of the microbes within the human body are the obligate anaerobes, Clostridium spp., in the internal postmortem microbial communities. We hypothesized that time-dependent changes in the thanatomicrobiome within internal organs can estimate the time of death as a human body decays. Here we report a cross-sectional study of the sampling of 27 human corpses from criminal cases with postmortem intervals between 3.5-240 hours. The impetus for examining microbial communities in different internal organs is to address the paucity of empirical data on thanatomicrobiomic succession caused by the limited access to these organs prior to death and a dearth of knowledge regarding the movement of microbes within remains. Our sequencing results of 16S rRNA gene amplicons of 27 postmortem samples from cadavers demonstrated statistically significant time-, organ-, and sex-dependent changes. These results suggest that comprehensive knowledge of the number and abundance of each organ's signature microorganisms could be useful to forensic microbiologists as a new source of data for estimating postmortem interval.


Integrated time course omics analysis distinguishes immediate therapeutic response from acquired resistance.

  • Genevieve Stein-O'Brien‎ et al.
  • Genome medicine‎
  • 2018‎

Targeted therapies specifically act by blocking the activity of proteins that are encoded by genes critical for tumorigenesis. However, most cancers acquire resistance and long-term disease remission is rarely observed. Understanding the time course of molecular changes responsible for the development of acquired resistance could enable optimization of patients' treatment options. Clinically, acquired therapeutic resistance can only be studied at a single time point in resistant tumors.


Leukemic extracellular vesicles induce chimeric antigen receptor T cell dysfunction in chronic lymphocytic leukemia.

  • Michelle J Cox‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2021‎

Chimeric antigen receptor (CAR) T cell therapy has yielded unprecedented outcomes in some patients with hematological malignancies; however, inhibition by the tumor microenvironment has prevented the broader success of CART cell therapy. We used chronic lymphocytic leukemia (CLL) as a model to investigate the interactions between the tumor microenvironment and CART cells. CLL is characterized by an immunosuppressive microenvironment, an abundance of systemic extracellular vesicles (EVs), and a relatively lower durable response rate to CART cell therapy. In this study, we characterized plasma EVs from untreated CLL patients and identified their leukemic cell origin. CLL-derived EVs were able to induce a state of CART cell dysfunction characterized by phenotypical, functional, and transcriptional changes of exhaustion. We demonstrate that, specifically, PD-L1+ CLL-derived EVs induce CART cell exhaustion. In conclusion, we identify an important mechanism of CART cell exhaustion induced by EVs from CLL patients.


CD19 occupancy with tafasitamab increases therapeutic index of CART19 cell therapy and diminishes severity of CRS.

  • R Leo Sakemura‎ et al.
  • Blood‎
  • 2024‎

In the development of various strategies of anti-CD19 immunotherapy for the treatment of B-cell malignancies, it remains unclear whether CD19 monoclonal antibody therapy impairs subsequent CD19-targeted chimeric antigen receptor T-cell (CART19) therapy. We evaluated the potential interference between the CD19-targeting monoclonal antibody tafasitamab and CART19 treatment in preclinical models. Concomitant treatment with tafasitamab and CART19 showed major CD19 binding competition, which led to CART19 functional impairment. However, when CD19+ cell lines were pretreated with tafasitamab overnight and the unbound antibody was subsequently removed from the culture, CART19 function was not affected. In preclinical in vivo models, tafasitamab pretreatment demonstrated reduced incidence and severity of cytokine release syndrome and exhibited superior antitumor effects and overall survival compared with CART19 alone. This was associated with transient CD19 occupancy with tafasitamab, which in turn resulted in the inhibition of CART19 overactivation, leading to diminished CAR T apoptosis and pyroptosis of tumor cells.


GM-CSF disruption in CART cells modulates T cell activation and enhances CART cell anti-tumor activity.

  • Michelle J Cox‎ et al.
  • Leukemia‎
  • 2022‎

Inhibitory myeloid cells and their cytokines play critical roles in limiting chimeric antigen receptor T (CART) cell therapy by contributing to the development of toxicities and resistance following infusion. We have previously shown that neutralization of granulocyte-macrophage colony-stimulating factor (GM-CSF) prevents these toxicities and enhances CART cell functions by inhibiting myeloid cell activation. In this report, we study the direct impact of GM-CSF disruption during the production of CD19-directed CART cells on their effector functions, independent of GM-CSF modulation of myeloid cells. In this study, we show that antigen-specific activation of GM-CSFKO CART19 cells consistently displayed reduced early activation, enhanced proliferation, and improved anti-tumor activity in a xenograft model for relapsed B cell malignancies. Activated CART19 cells significantly upregulate GM-CSF receptors. However, the interaction between GM-CSF and its upregulated receptors on CART cells was not the predominant mechanism of this activation phenotype. GM-CSFKO CART19 cell had reduced BH3 interacting-domain death agonist (Bid), suggesting an interaction between GM-CSF and intrinsic apoptosis pathways. In conclusion, our study demonstrates that CRISPR/Cas9-mediated GM-CSF knockout in CART cells directly ameliorates CART cell early activation and enhances anti-tumor activity in preclinical models.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: