Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 54 papers

Immuno-PET imaging of tumor endothelial marker 8 (TEM8).

  • Frank Kuo‎ et al.
  • Molecular pharmaceutics‎
  • 2014‎

Tumor endothelial marker 8 (TEM8) is a cell surface receptor that is highly expressed in a variety of human tumors and promotes tumor angiogenesis and cell growth. Antibodies targeting TEM8 block tumor angiogenesis in a manner distinct from the VEGF receptor pathway. Development of a TEM8 imaging agent could aid in patient selection for specific antiangiogenic therapies and for response monitoring. In these studies, L2, a therapeutic anti-TEM8 monoclonal IgG antibody (L2mAb), was labeled with (89)Zr and evaluated in vitro and in vivo in TEM8 expressing cells and mouse xenografts (NCI-H460, DLD-1) as a potential TEM8 immuno-PET imaging agent. (89)Zr-df-L2mAb was synthesized using a desferioxamine-L2mAb conjugate (df-L2mAb); (125)I-L2mAb was labeled directly. In vitro binding studies were performed using human derived cell lines with high, moderate, and low/undetectable TEM8 expression. (89)Zr-df-L2mAb in vitro autoradiography studies and CD31 IHC staining were performed with cryosections from human tumor xenografts (NCI-H460, DLD-1, MKN-45, U87-MG, T-47D, and A-431). Confirmatory TEM8 Western blots were performed with the same tumor types and cells. (89)Zr-df-L2mAb biodistribution and PET imaging studies were performed in NCI-H460 and DLD-1 xenografts in nude mice. (125)I-L2mAb and (89)Zr-df-L2mAb exhibited specific and high affinity binding to TEM8 that was consistent with TEM8 expression levels. In NCI-H460 and DLD-1 mouse xenografts nontarget tissue uptake of (89)Zr-df-L2mAb was similar; the liver and spleen exhibited the highest uptake at all time points. (89)Zr-L2mAb was highly retained in NCI-H460 tumors with <10% losses from day 1 to day 3 with the highest tumor to muscle ratios (T:M) occurring at day 3. DLD-1 tumors exhibited similar pharmacokinetics, but tumor uptake and T:M ratios were reduced ∼2-fold in comparison to NCI-H460 at all time points. NCI-H460 and DLD-1 tumors were easily visualized in PET imaging studies despite low in vitro TEM8 expression in DLD-1 cells indicating that in vivo expression might be higher in DLD-1 tumors. From in vitro autoradiography studies (89)Zr-df-L2mAb specific binding was found in 6 tumor types (U87-MG, NCI-H460, T-47D MKN-45, A-431, and DLD-1) which highly correlated to vessel density (CD31 IHC). Westerns blots confirmed the presence of TEM8 in the 6 tumor types but found undetectable TEM8 levels in DLD-1 and MKN-45 cells. This data would indicate that TEM8 is associated with the tumor vasculature rather than the tumor tissue, thus explaining the increased TEM8 expression in DLD-1 tumors compared to DLD-1 cell cultures. (89)Zr-df-L2mAb specifically targeted TEM8 in vitro and in vivo although the in vitro expression was not necessarily predictive of in vivo expression which seemed to be associated with the tumor vasculature. In mouse models, (89)Zr-df-L2mAb tumor uptakes and T:M ratios were sufficient for visualization during PET imaging. These results would suggest that a TEM8 targeted PET imaging agent, such as (89)Zr-df-L2mAb, may have potential clinical, diagnostic, and prognostic applications by providing a quantitative measure of tumor angiogenesis and patient selection for future TEM8 directed therapies.


Lrp4 in astrocytes modulates glutamatergic transmission.

  • Xiang-Dong Sun‎ et al.
  • Nature neuroscience‎
  • 2016‎

Neurotransmission requires precise control of neurotransmitter release from axon terminals. This process is regulated by glial cells; however, the underlying mechanisms are not fully understood. We found that glutamate release in the brain was impaired in mice lacking low-density lipoprotein receptor-related protein 4 (Lrp4), a protein that is critical for neuromuscular junction formation. Electrophysiological studies revealed compromised release probability in astrocyte-specific Lrp4 knockout mice. Lrp4 mutant astrocytes suppressed glutamatergic transmission by enhancing the release of ATP, whose level was elevated in the hippocampus of Lrp4 mutant mice. Consequently, the mutant mice were impaired in locomotor activity and spatial memory and were resistant to seizure induction. These impairments could be ameliorated by blocking the adenosine A1 receptor. The results reveal a critical role for Lrp4, in response to agrin, in modulating astrocytic ATP release and synaptic transmission. Our findings provide insight into the interaction between neurons and astrocytes for synaptic homeostasis and/or plasticity.


Effect of surgical intervention on the expression of leukemia inhibitory factor and L-selectin ligand in the endometrium of hydrosalpinx patients during the implantation window.

  • Yiping Zhong‎ et al.
  • Experimental and therapeutic medicine‎
  • 2012‎

The aim of this study was to investigate the effect of surgical intervention on the expression of leukemia inhibitory factor (LIF) and L-selectin ligand in the endometrium of patients with hydrosalpinx during the implantation window. A total of 60 patients with hydrosalpinx and 30 patients with tubal obstruction were recruited, and immunohistochemistry was performed to detect the expression of LIF and L-selectin ligand in the endometrium of hydrosalpinx patients before and after surgery and in the endometrium of patients with tubal obstruction. The expression of LIF and L-selectin ligand in the endometrium of hydrosalpinx patients before surgery was markedly lower than that of patients with tubal obstruction (P<0.05). Following surgery, the expression of LIF and L-selectin ligand in the endometrium of hydrosalpinx patients was comparable to that of patients with tubal obstruction (P>0.05). In addition, there was a pronounced difference in the expression of LIF and L-selectin ligand in the endometrium before and after surgery in patients with hydrosalpinx (P<0.05). Hydrosalpinx reduces the expression of LIF and L-selectin ligand in the endometrium during the implantation window. LIF and L-selectin ligand may be important factors influencing the endometrial receptivity of hydrosalpinx patients, and surgery is capable of improving the expression of LIF and L-selectin ligand in the endometrium during the implantation window.


Both Notch1 and its ligands in B cells promote antibody production.

  • Gaizhi Zhu‎ et al.
  • Molecular immunology‎
  • 2017‎

Notch1 signaling regulates B and T lymphocyte development and also in vitro promotes antibody secretion upon B cell activation. However, it is still unclear about the role of Notch1 in antibody production upon in vitro and in vivo mixture lymphocytes activation. We first showed that Notch1 expressed in LPS-activated CD19hi B cells and CD19cre mediated Notch1 knock-down in LPS-activated B cells. Furthermore, we demonstrated that Notch1 knock-down in B cells reduced antibody production in LPS-stimulated B cells but did not affect antibody production in LPS-stimulated splenocytes and in experimental allergic encephalomyelitis (EAE) mice. Importantly, Notch1 ligands Dll1 and Jag1 expressed in B cells and pre-coated Notch1 protein promotes Notch1-knocked down B cells to produce antibody in LPS-stimulated B cells suggesting that Notch1 in other cells may promote antibody production by binding its ligands Dll1 and Jag1 in B cells. Together, our results suggest that both Notch1 and its ligands in B cells play an important role in antibody production.


Soft Matrix Combined With BMPR Inhibition Regulates Neurogenic Differentiation of Human Umbilical Cord Mesenchymal Stem Cells.

  • Yingying Sun‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Stem cells constantly encounter as well as respond to a variety of signals in their microenvironment. Although the role of biochemical factors has always been emphasized, the significance of biophysical signals has not been studied until recently. Additionally, biophysical elements, like extracellular matrix (ECM) stiffness, can regulate functions of stem cells. In this study, we demonstrated that soft matrix with 1-10 kPa can induce neural differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). Importantly, we used a combination of soft matrix and bone morphogenetic protein receptor (BMPR) inhibition to promote neurogenic differentiation of hUC-MSCs. Furthermore, BMPR/SMADs occurs in crosstalk with the integrinβ1 downstream signaling pathway. In addition, BMPR inhibition plays a positive role in maintaining the undifferentiated state of hUC-MSCs on the hydrogel substrate. The results provide further evidence for the molecular mechanisms via which stem cells convert mechanical inputs into fateful decisions.


ApoE Influences the Blood-Brain Barrier Through the NF-κB/MMP-9 Pathway After Traumatic Brain Injury.

  • Zhipeng Teng‎ et al.
  • Scientific reports‎
  • 2017‎

Apolipoprotein E (ApoE), encoded by the ApoE gene (APOE), influences the outcomes of traumatic brain injury (TBI), but the mechanism remains unclear. The present study aimed to investigate the effects of different ApoEs on the outcome of TBI and to explore the possible mechanisms. Controlled cortical impact (CCI) was performed on APOEε3 (E3) and APOEε4 (E4) transgenic mice, APOE-KO (KO) mice, and wild type (WT) mice to construct an in vivo TBI model. Neurological deficits, blood brain barrier (BBB) permeability and brain edema were detected at days 1, 3, and 7 after TBI. The results revealed no significant differences among the four groups at day 1 or day 3 after injury, but more severe deficits were found in E4 and KO mice than in E3 and WT mice. Furthermore, a significant loss of tight junction proteins was observed in E4 and KO mice compared with E3 and WT mice at day 7. Additionally, more expression and activation of NF-κB and MMP-9 were found in E4 mice compared with E3 mice. Different ApoEs had distinct effects on neuro-function and BBB integrity after TBI. ApoE3, but not E4, might inhibit the NF-κB/MMP-9 pathway to alleviate BBB disruption and improve TBI outcomes.


Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB.

  • Jian Chen‎ et al.
  • BioMed research international‎
  • 2017‎

Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF-κB activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF-κB inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF-α-induced NF-κB activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF-κB.


Analysis of differentially expressed genes among human hair follicle-derived iPSCs, induced hepatocyte-like cells, and primary hepatocytes.

  • Ziran Xu‎ et al.
  • Stem cell research & therapy‎
  • 2018‎

Differentiation of human induced pluripotent stem cells (hiPSCs) into hepatocytes has important clinical significance in providing a new stem cell source for cell therapy of terminal liver disease. The differential gene expression analysis of hiPSCs, induced hepatocyte-like cells (HLCs), and primary human hepatocytes (PHHs) provides valuable information for optimization of an induction scheme and exploration of differentiation mechanisms.


The lncRNA SEMA3B-AS1/HMGB1/FBXW7 Axis Mediates the Peritoneal Metastasis of Gastric Cancer by Regulating BGN Protein Ubiquitination.

  • Guoquan Huang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Peritoneal metastasis (PM) is one of the main causes of a poor prognosis in patients with advanced gastric cancer (GC). lncRNAs have been confirmed to play a very crucial role in the occurrence, development, and metastasis of many human cancers, including gastric cancer. However, the mechanism of lncRNA in PM of GC is rarely studied. We explored the mechanism of PM of GC through lncRNA gene sequencing and protein profiling analysis to detect PM-associated lncRNAs and proteins. A quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to identify the mRNA expression of SEMA3B-AS1 and BGN in GC tissues and adjacent normal tissues. The biological function of SEMA3B-AS1 in the PM of GC was identified through gain- and loss-of-function assays. Chromatin isolation by RNA purification (ChIRP), RNA immunoprecipitation (RIP), RNA pull-down, luciferase reporter, and coimmunoprecipitation (co-IP) assays was carried out to demonstrate the potential mechanism between SEMA3B-AS1 and its downstream genes, including HMGB1, FBXW7, and BGN. Finally, the biological function of SEMA3B-AS1 was demonstrated in animal experiments. The mRNA expression level of SEMA3B-AS1 was downregulated in GC and PM tissues compared to normal stomach tissues; however, BGN was highly expressed at the mRNA level. SEMA3B-AS1 was closely related to PM and the overall survival (OS) of GC patients. Functionally, the overexpression of SEMA3B-AS1 was related to GC progression, PM, and prognosis. Mechanistically, SEMA3B-AS1 could combine with HMGB1 to regulate the transcription of FBXW7, thus facilitating the ubiquitination of BGN. In conclusion, our study demonstrated that the SEMA3B-AS1/HMGB1/FBXW7 axis plays an inhibitory role in the PM of GC by regulating BGN protein ubiquitination. It also provides a new biological marker for the diagnosis and treatment of the PM of GC.


LINC00924-induced fatty acid metabolic reprogramming facilitates gastric cancer peritoneal metastasis via hnRNPC-regulated alternative splicing of Mnk2.

  • Qiuming He‎ et al.
  • Cell death & disease‎
  • 2022‎

The molecular mechanism underlying gastric cancer (GC) peritoneal metastasis (PM) remains unclear. Here, we identified LINC00924 as a GC PM-related lncRNA through Microarray sequencing. LINC00924 was highly expressed in GC, and its high expression is associated with a broad range of PM. Via RNA sequencing, RNA pulldown assay, mass spectrometry, Seahorse, Lipidomics, spheroid formation and cell viability assays, we found that LINC00924 promoted fatty acid (FA) oxidation (FAO) and FA uptake, which was essential for matrix-detached GC cell survival and spheroid formation. Regarding the mechanism, LINC00924 regulated the alternative splicing (AS) of Mnk2 pre-mRNA by binding to hnRNPC. Specifically, LINC00924 enhanced the binding of hnRNPC to Mnk2 pre-mRNA at e14a, thus downregulating Mnk2a splicing and regulating the p38 MAPK/PPARα signaling pathway. Collectively, our results demonstrate that LINC00924 plays a role in promoting GC PM and could serve as a drug target.


Exosomes derived from umbilical cord mesenchymal stem cells protect cartilage and regulate the polarization of macrophages in osteoarthritis.

  • Pengdong Li‎ et al.
  • Annals of translational medicine‎
  • 2022‎

Osteoarthritis (OA) is one of the most common joint diseases and a major global public health concern. Mesenchymal stem cells (MSCs) have been widely used for the treatment of OA owing to their paracrine secretion of trophic factors, a phenomenon in which exosomes may play a major role. Here, we investigate the potential of exosomes from human umbilical cord-derived MSCs (hUC-MSCs-Exos) in alleviating OA.


Slit2 as a β-catenin/Ctnnb1-dependent retrograde signal for presynaptic differentiation.

  • Haitao Wu‎ et al.
  • eLife‎
  • 2015‎

Neuromuscular junction formation requires proper interaction between motoneurons and muscle cells. β-Catenin (Ctnnb1) in muscle is critical for motoneuron differentiation; however, little is known about the relevant retrograde signal. In this paper, we dissected which functions of muscle Ctnnb1 are critical by an in vivo transgenic approach. We show that Ctnnb1 mutant without the transactivation domain was unable to rescue presynaptic deficits of Ctnnb1 mutation, indicating the involvement of transcription regulation. On the other hand, the cell-adhesion function of Ctnnb1 is dispensable. We screened for proteins that may serve as a Ctnnb1-directed retrograde factor and identified Slit2. Transgenic expression of Slit2 specifically in the muscle was able to diminish presynaptic deficits by Ctnnb1 mutation in mice. Slit2 immobilized on beads was able to induce synaptophysin puncta in axons of spinal cord explants. Together, these observations suggest that Slit2 serves as a factor utilized by muscle Ctnnb1 to direct presynaptic differentiation.


E3 Ligase VHL Promotes Group 2 Innate Lymphoid Cell Maturation and Function via Glycolysis Inhibition and Induction of Interleukin-33 Receptor.

  • Qian Li‎ et al.
  • Immunity‎
  • 2018‎

Group 2 innate lymphoid cells (ILC2s) are a specialized subset of lymphoid effector cells that are critically involved in allergic responses; however, the mechanisms of their regulation remain unclear. We report that conditional deletion of the E3 ubiquitin ligase VHL in innate lymphoid progenitors minimally affected early-stage bone marrow ILC2s but caused a selective and intrinsic decrease in mature ILC2 numbers in peripheral non-lymphoid tissues, resulting in reduced type 2 immune responses. VHL deficiency caused the accumulation of hypoxia-inducible factor 1α (HIF1α) and attenuated interleukin-33 (IL-33) receptor ST2 expression, which was rectified by HIF1α ablation or inhibition. HIF1α-driven expression of the glycolytic enzyme pyruvate kinase M2 downmodulated ST2 expression via epigenetic modification and inhibited IL-33-induced ILC2 development. Our study indicates that the VHL-HIF-glycolysis axis is essential for the late-stage maturation and function of ILC2s via targeting IL-33-ST2 pathway.


Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells.

  • Hemant Sarin‎ et al.
  • Journal of translational medicine‎
  • 2008‎

Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells.


PLK1 Is a Potential Prognostic Factor Associated with the Tumor Microenvironment in Lung Adenocarcinoma.

  • Lina Wang‎ et al.
  • BioMed research international‎
  • 2022‎

More than 40% of lung cancers are lung adenocarcinoma (LUAD) worldwide. However, the prognosis of LUAD is poor for the lack of effective treatment methods. Our study identified PLK1 as a novel prognosis biomarker and treatment target for LUAD. Based on the Cancer Genome Atlas (TCGA) database, differentially expressed genes (DEGs) from 551 LUAD cases were analyzed for the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. To explore the biological pathways and the tumor-infiltrating immune cells (TICs) using gene set variation analysis (GSVA) and the CIBERSORT, as well as to analyze DEGs, a protein-protein interaction (PPI) network and Cox regression analysis were performed. Validation of DEGs was achieved through quantitative real-time PCR (qPCR) and immunoblotting. DEGs associated with the cell cycle were sorted out. Cell cycle scores were positively correlated with age, clinical stages, and metastasis and negatively correlated with overall survival of LUAD patients. PPI and Cox analyses showed that PLK1 could be a prognostic factor for LUAD patients. CIBERSORT analysis revealed a positive correlation between the transcription level of PLK1 and the function of CD8+ and activated memory CD4+ T cells, as well as a negative correlation with activated natural killer cells. Furthermore, PLK1 overexpression increased immune cytotoxicity, as measured by the cytolytic activity score, IFN- score, and IFN- level. There is a strong correlation between PLK1 and key features of TICs, indicating its potential as a promising prognostic biomarker for LUAD.


Cancer-associated fibroblast-like fibroblasts in vocal fold leukoplakia suppress CD8+T cell functions by inducing IL-6 autocrine loop and interacting with Th17 cells.

  • Yi Fang‎ et al.
  • Cancer letters‎
  • 2022‎

The characteristics of fibroblast cells in head and neck precancerous lesion and its ability to secrete inflammatory cytokines and affect CD8+T cell functions remain unclear. Herein, we reported the existence of fibroblasts in human-derived vocal fold leukoplakia (VFL) with positive staining of fibroblast activation protein (FAP) and α-smooth muscle actin (α-SMA). The fibroblasts from VFL and cancer-associated fibroblasts (CAFs) from head and neck squamous cell carcinoma (HNSCC) displayed similar cellular functions and robust inflammatory cytokine secretions. The effects of fibroblasts from VFL in inducing the apoptosis, depletion of CD8+ T cells and recruitment of regulatory T cells (Treg cells) were observed. We further assessed the autocrine loop within VFL fibroblasts to self-stimulate by secreting IL-6, TGF-β through the IL-6/JAK2/STAT3 pathway. The synergistic stimulation of IL-6 and TGF-β promoted Th17 cell differentiation and IL-17A secretion, which could result in fibroblast activation in another positive loop. Tocilizumab (TOC), a monoclonal antibody targeting IL-6R, managed to suppress the overexpression of both IL-6 and TGF-β in VFL fibroblasts, and thus blocking IL-6 autocrine loop and CAF-Th17 loop in vitro. In a murine model of oral leukoplakia (OL), local injection of TOC inhibited the outgrowth of lesions and showed notable effect in control of OL progression in vivo. Our findings establish a novel rationale for blocking the IL-6/JAK2/STAT3 pathway to inhibit vocal fold (oral) leukoplakia progression and postpone HNSCC tumorigenesis.


Crosstalk between Activated Microglia and Neurons in the Spinal Dorsal Horn Contributes to Stress-induced Hyperalgesia.

  • Jian Qi‎ et al.
  • Scientific reports‎
  • 2016‎

Stress has been shown to enhance pain sensitivity resulting in stress-induced hyperalgesia. However, the underlying mechanisms have yet to be elucidated. Using single-prolonged stress combined with Complete Freund's Adjuvant injection model, we explored the reciprocal regulatory relationship between neurons and microglia, which is critical for the maintenance of posttraumatic stress disorder (PTSD)-induced hyperalgesia. In our assay, significant mechanical allodynia was observed. Additionally, activated neurons in spinal dorsal horn were observed by analysis of Fos expression. And, microglia were also significantly activated with the presence of increased Iba-1 expression. Intrathecal administration of c-fos antisense oligodeoxynucleotides (ASO) or minocycline (a specific microglia inhibitor) attenuated mechanical allodynia. Moreover, intrathecal administration of c-fos ASO significantly suppressed the activation of neurons and microglia. Interestingly, inhibition of microglia activation by minocycline significantly suppressed the activation of both neurons and microglia in spinal dorsal horn. P38 inhibitor SB203580 suppressed IL-6 production, and inhibition of IL-6 receptor (IL-6R) activation by tocilizumab suppressed Fos expression. Together, our data suggest that the presence of a "crosstalk" between activated microglia and neurons in the spinal dorsal horn, which might contribute to the stress-induced hyperactivated state, leading to an increased pain sensitivity.


Efficacy of acid suppression therapy in gastroesophageal reflux disease-related chronic laryngitis.

  • Yue Yang‎ et al.
  • Medicine‎
  • 2016‎

This research aims to assess the response to acid suppression therapy in gastroesophageal reflux disease (GERD)-related chronic laryngitis (CL).


Disruption of rack1 suppresses SHH-type medulloblastoma formation in mice.

  • Fengjiao Liu‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2021‎

Medulloblastoma (MB) is a malignant pediatric brain tumor that arises in the cerebellar granular neurons. Sonic Hedgehog subtype of MB (SHH-MB) is one of the major subtypes of MB in the clinic. However, the molecular mechanisms underlying MB tumorigenesis are still not fully understood.


The lncRNA BDNF-AS/WDR5/FBXW7 axis mediates ferroptosis in gastric cancer peritoneal metastasis by regulating VDAC3 ubiquitination.

  • Guoquan Huang‎ et al.
  • International journal of biological sciences‎
  • 2022‎

Ferroptosis is a novel form of cell death that is closely associated with the formation of many tumors. Our study focused on the mechanism by which long noncoding RNAs (lncRNAs) regulate ferroptosis in gastric cancer (GC) peritoneal metastasis (PM). We utilized lncRNA sequencing and protein profiling analysis to identify ferroptosis-associated lncRNAs and proteins. qRT-PCR was used to analyze the expression of BDNF-AS and FBXW7 in GC tissues and adjacent normal tissues. Chromatin isolation by RNA purification (ChIRP), RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and coimmunoprecipitation (co-IP) assays were performed to investigate the interaction between BDNF-AS and its downstream targets. Finally, the function of BDNF-AS was validated in vivo . We demonstrated that BDNF-AS was highly expressed in GC and PM tissues. High BDNF-AS expression was positively related to GC progression and poor prognosis. Functionally, BDNF-AS overexpression protected GC cells from ferroptosis and promoted the progression of GC and PM. Mechanistically, BDNF-AS could regulate FBXW7 expression by recruiting WDR5, thus affecting FBXW7 transcription, and FBXW7 regulated the protein expression of VDAC3 through ubiquitination. Conclusively, our research demonstrated that the BDNF-AS/WDR5/FBXW7 axis regulates ferroptosis in GC by affecting VDAC3 ubiquitination. BDNF-AS might be a biomarker for the evaluation of GC prognosis and the treatment of GC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: