Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 83 papers

Serologic survey of pandemic (H1N1) 2009 virus, Guangxi Province, China.

  • Honglin Chen‎ et al.
  • Emerging infectious diseases‎
  • 2009‎

No abstract available


Enhanced QSAR model performance by integrating structural and gene expression information.

  • Qian Chen‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2013‎

Despite decades of intensive research and a number of demonstrable successes, quantitative structure-activity relationship (QSAR) models still fail to yield predictions with reasonable accuracy in some circumstances, especially when the QSAR paradox occurs. In this study, to avoid the QSAR paradox, we proposed a novel integrated approach to improve the model performance through using both structural and biological information from compounds. As a proof-of-concept, the integrated models were built on a toxicological dataset to predict non-genotoxic carcinogenicity of compounds, using not only the conventional molecular descriptors but also expression profiles of significant genes selected from microarray data. For test set data, our results demonstrated that the prediction accuracy of QSAR model was dramatically increased from 0.57 to 0.67 with incorporation of expression data of just one selected signature gene. Our successful integration of biological information into classic QSAR model provided a new insight and methodology for building predictive models especially when QSAR paradox occurred.


A network study of chinese medicine xuesaitong injection to elucidate a complex mode of action with multicompound, multitarget, and multipathway.

  • Linli Wang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

Chinese medicine has evolved from thousands of years of empirical applications and experiences of combating diseases. It has become widely recognized that the Chinese medicine acts through complex mechanisms featured as multicompound, multitarget and multipathway. However, there is still a lack of systematic experimental studies to elucidate the mechanisms of Chinese medicine. In this study, the differentially expressed genes (DEGs) were identified from myocardial infarction rat model treated with Xuesaitong Injection (XST), a Chinese medicine consisting of the total saponins from Panax notoginseng (Burk.) F. H. Chen (Chinese Sanqi). A network-based approach was developed to combine DEGs related to cardiovascular diseases (CVD) with lines of evidence from the literature mining to investigate the mechanism of action (MOA) of XST on antimyocardial infarction. A compound-target-pathway network of XST was constructed by connecting compounds to DEGs validated with literature lines of evidence and the pathways that are functionally enriched. Seventy potential targets of XST were identified in this study, of which 32 were experimentally validated either by our in vitro assays or by CVD-related literatures. This study provided for the first time a network view on the complex MOA of antimyocardial infarction through multiple targets and pathways.


Adipose-Derived Exosomes Exert Proatherogenic Effects by Regulating Macrophage Foam Cell Formation and Polarization.

  • Zulong Xie‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Obesity is causally associated with atherosclerosis, and adipose tissue (AT)-derived exosomes may be implicated in the metabolic complications of obesity. However, the precise role of AT-exosomes in atherogenesis remains unclear. We herein aimed to assess the effect of AT-exosomes on macrophage foam cell formation and polarization and subsequent atherosclerosis development.


Role of T cell immune response cDNA 7 on the pathology of acute graft-versus-host disease.

  • Feng Zhu‎ et al.
  • Oncology letters‎
  • 2020‎

Activation of T lymphocytes is the initiating factor of the occurrence of acute graft-versus-host disease (aGVHD), and cytotoxic T lymphocyte antigen-4 (CTLA-4) is the inhibitory receptor for activating T cells. T cell immune response cDNA 7 (TIRC7) is considered an upstream regulator of CTLA-4; however, little is understood regarding the effects of TIRC7 on the regulation of CTLA-4 in aGVHD. The purpose of the present study was to evaluate the regulatory effects of TIRC7 on aGVHD, mainly in the pathology. Recipient mice were exposed to a preconditioning dose of 7.5 Gy irradiation on the day of the transplantation and were divided into the following groups: Blank control group, bone marrow transplantation control group, total body irradiation group, mild-moderate aGVHD group and severe aGVHD group. According to the different administration of CTLA-4 and TIRC7 monoclonal antibodies, the mild-moderate and severe aGVHD groups were randomly divided into the hematopoietic stem cell transplantation (HSCT) and HSCT + CTLA-4/TIRC7 groups. Recipient mice were sacrificed at different time points post-HSCT for histopathological analysis by hematoxylin and eosin staining. Compared with the control and other experimental groups, the mice in the combined CTLA-4 and TIRC7 group exhibited ameliorated pathological injury, and lower pathology scores of the liver, lung and intestine. These data revealed that intraperitoneal injection of anti-TIRC7 and/or anti-CTLA-4 monoclonal antibody into mice could effectively alleviate the severity of aGVHD.


Evidence on Efficacy and Safety of Chinese Medicines Combined Western Medicines Treatment for Breast Cancer With Endocrine Therapy.

  • Lu Li‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Breast cancer, a malignant disorder, occurs in epithelial tissue of the breast glands and ducts. Endocrine therapy is commonly applied as an important adjuvant treatment for breast cancer, but it usually induces a variety of side effects. Chinese Medicines (CM) has therapeutic effect on reducing adverse effects of the endocrine therapy in many clinical studies. But strong evidence is still limited on the efficacy and safety of CM combined western medicines (CM-WM) for breast cancer.


Multiplexing Methods for Simultaneous Large-Scale Transcriptomic Profiling of Samples at Single-Cell Resolution.

  • Junyun Cheng‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2021‎

Barcoding technology has greatly improved the throughput of cells and genes detected in single-cell RNA sequencing (scRNA-seq) studies. Recently, increasing studies have paid more attention to the use of this technology to increase the throughput of samples, as it has greatly reduced the processing time, technical batch effects, and library preparation costs, and lowered the per-sample cost. In this review, the various DNA-based barcoding methods for sample multiplexing are focused on, specifically, on the four major barcoding strategies. A detailed comparison of the barcoding methods is also presented, focusing on aspects such as sample/cell throughput and gene detection, and guidelines for choosing the most appropriate barcoding technique according to the personalized requirements are developed. Finally, the critical applications of sample multiplexing and technical challenges in combinatorial labeling, barcoding in vivo, and multimodal tagging at the spatially resolved resolution, as well as, the future prospects of multiplexed scRNA-seq, for example, prioritizing and predicting the severity of coronavirus disease 2019 (COVID-19) in patients of different gender and age are highlighted.


Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions.

  • Binsheng Gong‎ et al.
  • Genome biology‎
  • 2021‎

Targeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing.


Anti-inflammatory effects and molecular mechanisms of bioactive small molecule garlic polysaccharide.

  • Xin Shao‎ et al.
  • Frontiers in nutrition‎
  • 2022‎

Although garlic polysaccharides have been found to possess anti-inflammatory activities, anti-inflammatory study on small molecule water-soluble garlic polysaccharide (WSGP) is few. In this study, a novel WSGP with a molecular weight of 1853 Da was isolated by DEAE-52 and Sephadex G-100 column and the chemical composition was identified by monosaccharide composition and methylation analysis. Furthermore, the antioxidant effects of WSGP and the potential molecular mechanisms on LPS-induced inflammatory responses in RAW264.7 macrophage cells were investigated. The results showed that WSGP has strong antioxidant activity, such as DPPH, hydroxyl, superoxide anion, ABTS radical scavenging capacity, Fe2+ chelating ability and reducing power. Meanwhile, WSGP could considerably suppress the manufacturing of NO and the mRNA and protein expression degrees of IL-6, TNF-α, and IL-1β in LPS inspired RAW264.7 macrophages WSGP could significantly suppress the production of NO and the mRNA and protein expression levels of IL-1β, IL-6, and TNF-α in LPS stimulated RAW264.7 macrophage cells (p < 0.05). In addition, the phosphorylated IκB-α, p65, and STAT3 proteins were significantly increased in LPS-induced macrophages, while this trend was significantly reversed by WSGP treatment in a concentration-dependent manner (p < 0.05). Consequently, WSGP supplementation might reduce LPS-induced inflammatory responses by suppressing proinflammatory cytokines and NF-κB and STAT3 pathway activation. The finding of this research would give scientific guidelines for the judicious use of small molecular garlic polysaccharide in anti-inflammatory treatments.


Shexiang Tongxin Dropping Pill Protects Against Chronic Heart Failure in Mice via Inhibiting the ERK/MAPK and TGF-β Signaling Pathways.

  • Shuying Zhang‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Background: Chronic heart failure (CHF) is a major public health problem with high mortality and morbidity worldwide. Shexiang Tongxin Dropping Pill (STDP) is a widely used traditional Chinese medicine preparation for coronary heart disease and growing evidence proves that STDP exerts beneficial effects on CHF in the clinic. However, the molecular mechanism of the therapeutic effects of STDP on CHF remains largely unknown. Objective: This study aimed to elucidate the mechanism of action of STDP against CHF by integrating network pharmacology analysis and whole-transcriptome sequencing. Methods: First, the mouse model of CHF was established by the transverse aortic constriction (TAC) surgery, and the efficacy of STDP against CHF was evaluated by assessing the alterations in cardiac function, myocardial fibrosis, and cardiomyocyte hypertrophy with echocardiography, Masson's trichrome staining, and wheat germ agglutinin staining. Next, a CHF disease network was constructed by integrating cardiovascular disease-related genes and the transcriptome sequencing data, which was used to explore the underlying mechanism of action of STDP. Then, the key targets involved in the effects of STDP on CHF were determined by network analysis algorithms, and pathway enrichment analysis was performed to these key genes. Finally, important targets in critical pathway were verified in vivo. Results: STDP administration obviously improved cardiac function, relieved cardiomyocyte hypertrophy, and ameliorated myocardial fibrosis in CHF mice. Moreover, STDP significantly reversed the imbalanced genes that belong to the disease network of CHF in mice with TAC, and the number of genes with the reverse effect was 395. Pathway analysis of the crucial genes with recovery efficiency revealed that pathways related to fibrosis and energy metabolism were highly enriched, while TGF-β pathway and ERK/MAPK pathway were predicted to be significantly affected. Consistently, validation experiments confirmed that inhibiting ERK/MAPK and TGF-β signaling pathways via reduction of the phosphorylation level of Smad3 and ERK1/2 is the important mechanism of STDP against CHF. Conclusion: Our data demonstrated that STDP can recover the imbalanced CHF network disturbed by the modeling of TAC through the multi-target and multi-pathway manner in mice, and the mechanisms are mainly related to inhibition of ERK/MAPK and TGF-β signaling pathways.


Single-cell RNA sequencing reveals enhanced antitumor immunity after combined application of PD-1 inhibitor and Shenmai injection in non-small cell lung cancer.

  • Dingyi Yu‎ et al.
  • Cell communication and signaling : CCS‎
  • 2023‎

Immune checkpoint inhibitors (ICIs) have altered the clinical management of non-small cell lung cancer (NSCLC). However, the low response rate, severe immune-related adverse events (irAEs), and hyperprogressive disease following ICIs monotherapy require attention. Combination therapy may overcome these limitations and traditional Chinese medicine with immunomodulatory effects provides a promising approach. Shenmai injection (SMI) is a clinically effective adjuvant treatment for cancer with chemotherapy and radiotherapy. Therefore, the combined effects and mechanisms of SMI and programmed death-1 (PD-1) inhibitor against NSCLC was focused on this study.


Single-cell RNA sequencing reveals the dynamics of hepatic non-parenchymal cells in autoprotection against acetaminophen-induced hepatotoxicity.

  • Lingqi Yu‎ et al.
  • Journal of pharmaceutical analysis‎
  • 2023‎

Gaining a better understanding of autoprotection against drug-induced liver injury (DILI) may provide new strategies for its prevention and therapy. However, little is known about the underlying mechanisms of this phenomenon. We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells (NPCs) in autoprotection against DILI, using acetaminophen (APAP) as a model drug. Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice, followed by a higher dose in a secondary challenge. NPC subsets and dynamic changes were identified in the APAP (hepatotoxicity-sensitive) and APAP-resistant (hepatotoxicity-resistant) groups. A chemokine (C-C motif) ligand 2+ endothelial cell subset almost disappeared in the APAP-resistant group, and an R-spondin 3+ endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection. Moreover, the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation. DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group. In addition, the natural killer cell subsets NK-3 and NK-4 and the Sca-1-CD62L+ natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways. Furthermore, macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity. Overall, this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.


Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells.

  • Daxian Zhao‎ et al.
  • European journal of pharmacology‎
  • 2014‎

Angiogenesis plays an essential role in many physiological and pathological processes. Quercetin, a plant pigment and traditional Chinese medicinal herb, is an important flavonoid that has anti-cancer activity. However, the function of quercetin in blood vessel development in vivo and in vitro is still unclear. In this study, we investigated the anti-angiogenic activity of quercetin in zebrafish embryos and in human umbilical vein endothelial cells (HUVECs). Our results showed that quercetin disrupted the formation of intersegmental vessels, the dorsal aorta and the posterior cardinal vein in transgenic zebrafish embryos. In HUVECs, quercetin inhibited cell viability, the expression of vascular endothelial growth factor receptor 2 and tube formation in a dose-dependent manner. In inhibiting angiogenesis, quercetin was found to be involved in suppressing the extracellular signal-regulated kinase signaling pathway in vivo and in vitro. This study has shown that quercetin has potent anti-angiogenic activity and may be a candidate anti-cancer agent for future research.


A three step network based approach (TSNBA) to finding disease molecular signature and key regulators: a case study of IL-1 and TNF-alpha stimulated inflammation.

  • Jihong Yang‎ et al.
  • PloS one‎
  • 2014‎

A disease molecular signature is a set of biomolecular features that are prognostic of clinical phenotypes and indicative of underlying pathology. It is of great importance to develop computational approaches for finding more relevant molecular signatures. Based upon the hypothesis that various components in a molecular signature are more likely to share similar patterns, we introduced a novel three step network based approach (TSNBA) to identify the molecular signature and key pathological regulators. Protein-protein interaction (PPI) network and ranking algorithm were integrated in the first step to find pathology related proteins with high accuracy. It was followed by the second step to further screen with co-expression patterns for better pathology enrichment. Context likelihood of relatedness (CLR) algorithm was used in the third step to infer gene regulatory networks and identify key transcription regulators. We applied this approach to study IL-1 (interleukin-1) and TNF-alpha (tumor necrosis factor-alpha) stimulated inflammation. TSNBA identified inflammatory signature with high accuracy and outperformed 5 competing methods namely fold change, degree, interconnectivity, neighborhood score and network propagation based approaches. The best molecular signature, with 80% (40/50) confirmed inflammatory genes, was used to predict inflammation related genes. As a result, 8 out of 10 predicted inflammation genes that were not included in the benchmark Entrez Gene database were validated by literature evidence. Furthermore, 23 of the 32 predicted inflammation regulators were validated by literature evidence. The rest 9 were also validated with TF (transcription factor) binding site analysis. In conclusion, we developed an efficient strategy for disease molecular signature finding and key pathological regulator identification.


Predictive and prognostic value of phosphorylated c-KIT and PDGFRA in advanced non-small cell lung cancer harboring ALK fusion.

  • Haihong Yang‎ et al.
  • Oncology letters‎
  • 2019‎

Secondary KIT gene amplification leads to tyrosine kinase inhibitor resistance in anaplastic lymphoma kinase (ALK) fusion-positive advanced non-small cell lung cancer (NSCLC). The presence of the 4q12 amplicon causes the activation of downstream mast/stem cell growth factor receptor Kit (c-Kit) or platelet-derived growth factor receptor α (PDGFRA) signaling pathways. Therefore, in the present study, the association between the functional proteins phosphorylated c-Kit (p-c-Kit) and phosphorylated PDGFRA (p-PDGFRA) and the prognosis of ALK fusion NSCLC was investigated. Advanced stage NSCLC samples with ALK fusion were tested for their p-c-Kit and p-PDGFRA content by immunohistochemical staining, and for its association with crizotinib efficacy and the survival of the patients. Of 64 eligible ALK-positive patients with NSCLC, 30 (46.9%) were p-c-Kit-positive and 10 (15.7%) were p-PDGFRA-positive. Brain metastases were more common in ALK-positive cases that were p-PDGFRA-positive compared with those who were p-PDGFRA-negative. ALK-positive patients treated with crizotinib, who exhibited high levels of p-c-Kit had significantly lower progression-free survival times than those with low levels. In addition, the patients with high levels of p-c-Kit exhibited lower overall survival times than those with low levels. Furthermore, multivariate analysis indicated that high levels of p-c-Kit in patients with ALK fusion was the only significant predictive factor for crizotinib efficacy and was a prognostic factor for poor overall survival time. However, no statistically significant difference was observed in the survival of patients with different p-PDGFRA levels. p-PDGFRA was more frequently expressed in the ALK-positive cases with brain metastasis. c-Kit signaling activation may be associated with poor efficacy of crizotinib and poor prognosis in advanced ALK fusion NSCLC.


Chemical and Metabolic Profiling of Si-Ni Decoction Analogous Formulae by High performance Liquid Chromatography-Mass Spectrometry.

  • Qian Chen‎ et al.
  • Scientific reports‎
  • 2015‎

Along with an indispensable role in healthcare system of China for centuries, Traditional Chinese Medicine (TCM) shows increasing usages as complementary therapy in western countries. To improve our understanding on their therapeutic effects, it's critical to unveil chemical compositions of TCM formula, the predominant form of therapy in TCM. However, intrinsic chemical complexity makes it a challenging task to perform analysis on each individual TCM formula even with most current state-of-art analytic techniques available. In this work we approached this question by focusing on analogous formulae, a unique category of TCM formulae grouped together based on shared herbs and/or similar TCM syndromes. Systematic chemical profiling on five Si-Ni decoctions (SNs) for cardiovascular diseases was performed by multistage MS and high-resolution MS (HR-MS) experiments. A total of 83 compounds, including alkaloids, flavonoids, ginsenosides, bile acids and triterpenoids, were described. Analysis on SNs-treated rats detected 55 prototype compounds and 39 metabolites in the systemic circulation in vivo, which may contribute directly to their observed clinical efficacies. This approach offers great advantage to speed up identification of chemical compositions of formula and reveal the difference among these analogous formulae that may be related to diverse clinical effects.


A Bioactive Chemical Markers Based Strategy for Quality Assessment of Botanical Drugs: Xuesaitong Injection as a Case Study.

  • Zhenzhong Yang‎ et al.
  • Scientific reports‎
  • 2017‎

Current chemical markers based quality assessment methods largely fail to reflect intrinsic chemical complexity and multiple mechanisms of action of botanical drugs (BD). The development of novel quality markers is greatly needed. Here we propose bioactive chemical markers (BCM), defined as a group of chemo-markers that exhibit similar pharmacological activities comparable to the whole BD, which can therefore be used to effectively assess the quality of BD. As a proof-of-concept, a BCM-based strategy was developed and applied to Xuesaitong Injection (XST) for assessing the efficacy and consistency of different batches. Firstly, systemic characterization of chemical profile of XST revealed a total number of 97 compounds. Secondly, notoginsenoside R1, ginsenoside Rg1, Re, Rb1 and Rd were identified as BCM of XST on treating cardiovascular and cerebrovascular diseases according to Adjusted Efficacy Score following an in vivo validation. Analytical method for quantification of BCM was then developed to ensure the efficacy of XST. Finally, chemical fingerprinting was developed and used to evaluate the batch-to-batch consistency. Our present case study on XST demonstrates that BCM-based strategy offers a rational approach for quality assessment of BD and provides a workflow for chemistry, manufacturing, and controls (CMC) study of BD required by regulatory authority.


Circulating exosomal microRNAs reveal the mechanism of Fructus Meliae Toosendan-induced liver injury in mice.

  • Jie Zheng‎ et al.
  • Scientific reports‎
  • 2018‎

The toxicological mechanisms of liver injury caused by most traditional Chinese medicine (TCM) remain largely unknown. Due to the unique features, exosomal microRNAs (miRNAs) are currently attracting major interests to provide further insights into toxicological mechanisms. Thus, taking Fructus Meliae Toosendan as an example of hepatoxic TCM, this study aimed to elucidate its hepatotoxicity mechanisms through profiling miRNAs in circulating exosomes of Fructus Meliae Toosendan water extract (FMT)-exposed mice. Biological pathway analysis of the 64 differentially expressed exosomal miRNAs (DEMs) showed that hepatic dysfunction induced by FMT likely related to apoptosis, mitochondrial dysfunction, and cell cycle dysregulation. Integrated analysis of serum exosomal DEMs and hepatic differentially expressed mRNAs further enriched oxidative stress and apoptosis related pathways. In vitro validation studies for omics results suggested that FMT-induced DNA damage was mediated by generating intracellular reactive oxygen species, leading to cell apoptosis through p53-dependent mitochondrial damage and S-phase arrest. Nrf2-mediated antioxidant response was activated to protect liver cells. Moreover, serum exosomal miR-370-3p, the most down-regulated miRNA involving in these pathways, might be the momentous event in aggravating cytotoxic effect of FMT by elevating p21 and Cyclin E. In conclusion, circulating exosomal miRNAs profiling could contribute to deepen the understanding of TCM-induced hepatotoxicity.


Threonine 82 at the PDZ domain of PICK1 is critical for AMPA receptor interaction and localization.

  • Xin Shao‎ et al.
  • Neurochemistry international‎
  • 2010‎

Trafficking of AMPA receptors to and from synapses and their final localizations are critical for the expression of synaptic plasticity, which is regarded as the cellular basis of learning and memory. Protein that interacts with C Kinase 1 (PICK1), is one of the scaffolding proteins that interacts with AMPA receptors and regulates their trafficking in synaptic plasticity. In this study, we found that PICK1 could be a threonine-phosphorylated protein and identified threonine 82 (T82) in the PDZ domain of PICK1 as a potential phosphorylation site based on sequence and structural modeling analysis. We further performed co-immunoprecipitation experiments to confirm that T82 was indeed critical for the interaction between PICK1 and GluR2. In addition, T82E mutation mimicking the phosphorylation of PICK1 dispersed the colocalization of PICK1 and GluR2 in heterologous cells. Finally, the phosphorylated analog, T82E, inhibited PICK1's effect in regulating surface distribution of GluR2 and current mediated by GluR2. In summary, our data suggest that T82 is a potential phosphorylation site of PICK1 and is critical for the interaction of PICK1 with AMPA receptors and PICK1-regulated AMPA receptor localization.


Transcriptome sequencing profiling identifies miRNA-331-3p as an osteoblast-specific miRNA in infected bone nonunion.

  • Yang Zhang‎ et al.
  • Bone‎
  • 2021‎

Bone nonunion caused by bacterial infection accounts for bone fractures, bone trauma and bone transplantation surgeries. Severe consequences include delayed unions and amputation and result in functional limitations, work disability, and poor quality of life. However, the mechanism of bone nonunion remains unknown. In this study, we aimed to screen the miRNA biomarkers of bacterial bone infection and investigated whether miRNAs regulate the osteoblasts and thus contribute to bone nonunion. We established a miRNA-mRNA network based on high-throughput RNA sequencing to compare the model rabbits infected with Staphylococcus aureus with the control rabbits. After validation experiments, miRNA-331-3p and fibroblast growth factor 23 (FGF23) were found to be inversely correlated with the pathways of osteoblast mineralization and pathology of infected bone nonunion. In in vitro experiments, miRNA-331-3p was downregulated and FGF23 was upregulated in lipopolysaccharide (LPS)-induced mouse calvarial osteoblasts. Further studies of the mechanism showed that mutated of putative miRNA-331-3p can bind to FGF23 3'-untranslated region sites. MiRNA-331-3p acted as an osteoblast mineralization promoter by directly targeting FGF23. Downregulation of miRNA-331-3p led to inhibition of osteoblast mineralization by regulating the DKK1/β-catenin mediated signaling. Thus, we established an improved animal model and identified new bone-related biomarkers in the infected bone nonunion. The miRNA-331-3p biomarker was demonstrated to regulate osteoblast mineralization by targeting FGF23. The novel mechanism can be used as potential diagnostic biomarkers and therapeutic targets in the infected bone nonunion and other inflammatory bone disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: