Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

β2-Adrenergic Receptor Signaling Pathway Stimulates the Migration and Invasion of Cancer Cells via Src Activation.

  • Jae-Hoon Jeong‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Chronic stress has been reported to stimulate the release of catecholamines, including norepinephrine (NE) and epinephrine (E), which promote cancer progression by activating the adrenergic receptor (AR). Although previous studies showed that β2-AR mediated chronic stress-induced tumor growth and metastasis, the underlying mechanism has not been fully explored. In this study, we aimed to investigate the molecular mechanism by which β2-AR exerts a pro-metastatic function in hepatocarcinoma (HCC) cells and breast cancer (BC) cells. Our results showed that Hep3B human HCC cells and MDA-MB-231 human BC cells exhibited the highest ADRB2 expression among diverse HCC and BC cell lines. NE, E, and isoprenaline (ISO), adrenergic agonists commonly increased the migration and invasion of Hep3B cells and MDA-MB-231 cells. The phosphorylation level of Src was significantly increased by E/NE. Dasatinib, a Src kinase inhibitor, blocked E/NE-induced migration and invasion, indicating that AR agonists enhanced the mobility of cancer cells by activating Src. ADRB2 knockdown attenuated E/NE-induced Src phosphorylation, as well as the metastatic ability of cancer cells, suggesting the essential role of β2-AR. Taken together, our results demonstrate that chronic stress-released catecholamines promoted the migration and invasion of HCC cells and BC cells via β2-AR-mediated Src activation.


An Ethanol Extract of Perilla frutescens Leaves Suppresses Adrenergic Agonist-Induced Metastatic Ability of Cancer Cells by Inhibiting Src-Mediated EMT.

  • Jae-Hoon Jeong‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Previous studies have indicated that the adrenergic receptor signaling pathway plays a fundamental role in chronic stress-induced cancer metastasis. In this study, we investigated whether an ethanol extract of Perilla frutescens leaves (EPF) traditionally used to treat stress-related symptoms by moving Qi could regulate the adrenergic agonist-induced metastatic ability of cancer cells. Our results show that adrenergic agonists including norepinephrine (NE), epinephrine (E), and isoproterenol (ISO) increased migration and invasion of MDA-MB-231 human breast cancer cells and Hep3B human hepatocellular carcinoma cells. However, such increases were completely abrogated by EPF treatment. E/NE induced downregulation of E-cadherin and upregulation of N-cadherin, Snail, and Slug. Such effects were clearly reversed by pretreatment with EPF, suggesting that the antimetastatic activity of EPF could be related to epithelial-mesenchymal transition (EMT) regulation. EPF suppressed E/NE-stimulated Src phosphorylation. Inhibition of Src kinase activity with dasatinib completely suppressed the E/NE-induced EMT process. Transfecting MDA-MB-231 cells with constitutively activated Src (SrcY527F) diminished the antimigration effect of EPF. Taken together, our results demonstrate that EPF can suppress the adrenergic agonist-promoted metastatic ability of cancer cells by inhibiting Src-mediated EMT. This study provides basic evidence supporting the probable use of EPF to prevent metastasis in cancer patients, especially those under chronic stress.


Induction of apoptosis by morusin in human non-small cell lung cancer cells by suppression of EGFR/STAT3 activation.

  • Hyun-Ji Park‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

This study was designed to validate the anticancer effects of morusin in human non-small cell lung cancer (NSCLC) cells. Morusin suppressed the cell growth and colony formation in a concentration-dependent manner in H1299, H460 and H292 cells. These anticancer activities were related with apoptosis induction proved by the accumulation of chromatin condensation, PARP cleavage, increase of sub-G1 phage and annexin V-positive cell population. Interestingly, signal transducer and activator of transcription 3 (STAT3) was dephosphorylated by morusin. Morusin suppressed the transcriptional activity of STAT3 and down-regulated the expression of STAT3 target genes. In addition, morusin inhibited the phosphorylation of epithelial growth factor receptor (EGFR), an upstream regulator of STAT3. The docking study showed that morusin directly binds to the tyrosine kinase domain of EGFR. Furthermore, the anticancer effects of morusin were consistently observed in erlotinib-resistant H1975 cells expressing L858R and T790 M mutant EGFR, suggesting that morusin can be used for the advanced NSCLC with acquired resistance to EGFR TKI. Taken together, our results demonstrate that morusin induced apoptosis in human NSCLC cells regardless of EGFR mutation status through inhibition of EGFR/STAT3 activation.


Lupeol suppresses plasminogen activator inhibitor-1-mediated macrophage recruitment and attenuates M2 macrophage polarization.

  • Hyun-Ji Park‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Tumor-associated macrophages (TAMs) are closely related with poor prognosis of cancers. The current study investigated whether lupeol regulates TAMs by focusing on the recruitment and polarization of macrophages. We found that lupeol suppressed the recruitment of THP-1 macrophages (THP-1 cells differentiated into macrophages) towards H1299 lung carcinoma cells by inhibiting plasminogen activator inhibitor-1 (PAI-1) production from H1299 cells. The reduced migration of THP-1 macrophages by lupeol was recovered by adding recombinant human PAI-1 as a chemoattractant. Knockdown of PAI-1 or treatment of tiplaxtinin, a PAI-1 inhibitor, in H1299 cells abrogated the chemotaxis of macrophages. Furthermore, lupeol suppressed the interleukin (IL)-4- and IL-13-induced M2 macrophage polarization. The mRNA expression of M2 macrophage markers and the phosphorylation of signal transducer and activator of transcription 6 (STAT6) were commonly decreased by lupeol in RAW264.7 cells. In addition, lupeol-suppressed M2 macrophage polarization led to the reduced migration of Lewis lung carcinoma (LLC) cells. Taken together, our results suggest that lupeol attenuates PAI-1-mediated macrophage recruitment towards cancer cells and inhibits M2 macrophage polarization.


The Root Extract of Scutellaria baicalensis Induces Apoptosis in EGFR TKI-Resistant Human Lung Cancer Cells by Inactivation of STAT3.

  • Hyun-Ji Park‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) is a major obstacle in managing lung cancer. The root of Scutellaria baicalensis (SB) traditionally used for fever clearance and detoxification possesses various bioactivities including anticancer effects. The purpose of this study was to investigate whether SB exhibited anticancer activity in EGFR TKI-resistant lung cancer cells and to explore the underlying mechanism. We used four types of human lung cancer cell lines, including H1299 (EGFR wildtype; EGFR TKI-resistant), H1975 (acquired TKI-resistant), PC9/ER (acquired erlotinib-resistant), and PC9/GR (acquired gefitinib-resistant) cells. The ethanol extract of SB (ESB) decreased cell viability and suppressed colony formation in the four cell lines. ESB stimulated nuclear fragmentation and the cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-3. Consistently, the proportion of sub-G1 phase cells and annexin V+ cells were significantly elevated by ESB, indicating that ESB induced apoptotic cell death in EGFR TKI-resistant cells. ESB dephosphorylated signal transducer and activator of transcription 3 (STAT3) and downregulated the target gene expression. The overexpression of constitutively active STAT3 reversed ESB-induced apoptosis, suggesting that ESB triggered apoptosis in EGFR TKI-resistant cells by inactivating STAT3. Taken together, we propose the potential use of SB as a novel therapeutic for lung cancer patients with EGFR TKI resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: