Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination.

  • David M Moquin‎ et al.
  • Genes & development‎
  • 2019‎

Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.


PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks.

  • Jana Krietsch‎ et al.
  • Nucleic acids research‎
  • 2012‎

After the generation of DNA double-strand breaks (DSBs), poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins to be recruited and activated through its binding to the free DNA ends. Upon activation, PARP-1 uses NAD+ to generate large amounts of poly(ADP-ribose) (PAR), which facilitates the recruitment of DNA repair factors. Here, we identify the RNA-binding protein NONO, a partner protein of SFPQ, as a novel PAR-binding protein. The protein motif being primarily responsible for PAR-binding is the RNA recognition motif 1 (RRM1), which is also crucial for RNA-binding, highlighting a competition between RNA and PAR as they share the same binding site. Strikingly, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR, generated by activated PARP-1. Furthermore, we show that upon PAR-dependent recruitment, NONO stimulates nonhomologous end joining (NHEJ) and represses homologous recombination (HR) in vivo. Our results therefore place NONO after PARP activation in the context of DNA DSB repair pathway decision. Understanding the mechanism of action of proteins that act in the same pathway as PARP-1 is crucial to shed more light onto the effect of interference on PAR-mediated pathways with PARP inhibitors, which have already reached phase III clinical trials but are until date poorly understood.


Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant.

  • Marie-Christine Brotherton‎ et al.
  • PloS one‎
  • 2013‎

Antimonials remain the primary antileishmanial drugs in most developing countries. However, drug resistance to these compounds is increasing and our understanding of resistance mechanisms is partial.


Proteomic analysis of enriched lysosomes at early phase of camptothecin-induced apoptosis in human U-937 cells.

  • Nicolas Parent‎ et al.
  • Journal of proteomics‎
  • 2009‎

A lysosomal pathway, characterized by partial rupture or labilization of lysosomal membranes and cathepsin activation, is evoked during camptothecin-induced apoptosis in human cancer cells, including human histiocytic lymphoma U-937 cells. These lysosomal events begin rapidly and simultaneously with mitochondrial permeabilization and caspase activation within 3 h after drug treatment. In this study, comparative and quantitative proteome analyses were performed to identify early changes in lysosomal protein expression/localization from U-937 cells undergoing apoptosis. In 2 independent experiments, among a total of more than 538 proteins putatively identified and quantitated by iTRAQ isobaric labeling and LC-ESI-MS/MS, 18 proteins were found to be upregulated and 9 downregulated in lysosomes purified from early apoptotic compared to control cells. Protein expression was validated by Western blotting on enriched lysosome fractions, and protein localization confirmed by fluorescence confocal microscopy of representative protein candidates, whose functions are associated with lysosomal membrane fluidity and dynamics. These include sterol-4-alpha-carboxylate 3-dehydrogenase (NSDHL), prosaposin (PSAP) and protein kinase C delta (PKC-delta). This comparative proteome analysis provides the basis for novel hypothesis and rationale functional experimentation, where the 3 validated candidate proteins are associated with lysosomal membrane fluidity and dynamics, particularly cholesterol, sphingolipid and glycosphingolipid metabolism.


Quality assessment of peptide tandem mass spectra.

  • Fang-Xiang Wu‎ et al.
  • BMC bioinformatics‎
  • 2008‎

Tandem mass spectrometry has emerged as a cornerstone of high throughput proteomic studies owing in part to various high throughput search engines which are used to interpret these tandem mass spectra. However, majority of experimental tandem mass spectra cannot be interpreted by any existing methods. There are many reasons why this happens. However, one of the most important reasons is that majority of experimental spectra are of too poor quality to be interpretable. It wastes time to interpret these "uninterpretable" spectra by any methods. On the other hand, some spectra of high quality are not able to get a score high enough to be interpreted by existing search engines because there are many similar peptides in the searched database. However, such spectra may be good enough to be interpreted by de novo methods or manually verifying methods. Therefore, it is worth in developing a method for assessing spectral quality, which can used for filtering the spectra of poor quality before any interpretation attempts or for finding the most potential candidates for de novo methods or manually verifying methods.


Association of anti-nuclear matrix protein 2 antibody with complications in patients with idiopathic inflammatory myopathies: A meta-analysis of 20 cohorts.

  • Linqing Zhong‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2019‎

Several complications like calcinosis, interstitial lung disease (ILD) or malignancy, are primary causes leading to poor outcomes in idiopathic inflammatory myopathies (IIM) patients. Specific antibodies might help to indicate the occurrence or absence of these complications.


Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks.

  • Marie-Christine Caron‎ et al.
  • Nature communications‎
  • 2019‎

PARP-1 is rapidly recruited and activated by DNA double-strand breaks (DSBs). Upon activation, PARP-1 synthesizes a structurally complex polymer composed of ADP-ribose units that facilitates local chromatin relaxation and the recruitment of DNA repair factors. Here, we identify a function for PARP-1 in DNA DSB resection. Remarkably, inhibition of PARP-1 leads to hyperresected DNA DSBs. We show that loss of PARP-1 and hyperresection are associated with loss of Ku, 53BP1 and RIF1 resection inhibitors from the break site. DNA curtains analysis show that EXO1-mediated resection is blocked by PARP-1. Furthermore, PARP-1 abrogation leads to increased DNA resection tracks and an increase of homologous recombination in cellulo. Our results, therefore, place PARP-1 activation as a critical early event for DNA DSB repair activation and regulation of resection. Hence, our work has direct implications for the clinical use and effectiveness of PARP inhibition, which is prescribed for the treatment of various malignancies.


Drosophila Tubulin-Specific Chaperone E Recruits Tubulin around Chromatin to Promote Mitotic Spindle Assembly.

  • Mathieu Métivier‎ et al.
  • Current biology : CB‎
  • 2021‎

Proper assembly of mitotic spindles requires microtubule nucleation not only at the centrosomes but also around chromatin. In this study, we found that the Drosophila tubulin-specific chaperone dTBCE is required for the enrichment of tubulin in the nuclear space after nuclear envelope breakdown and for subsequent promotion of spindle microtubule nucleation. These events depend on the CAP-Gly motif found in dTBCE and are regulated by Ran and lamin proteins. Our data suggest that during early mitosis, dTBCE and nuclear pore proteins become enriched in the nucleus, where they interact with the Ran GTPase to promote dynamic tubulin enrichment. We propose that this novel mechanism enhances microtubule nucleation around chromatin, thereby facilitating mitotic spindle assembly.


Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum.

  • Marie-Christine Brotherton‎ et al.
  • International journal for parasitology. Drugs and drug resistance‎
  • 2014‎

Amphotericin B (AmB) in its liposomal form is now considered as either first- or second-line treatment against Leishmania infections in different part of the world. Few cases of AmB resistance have been reported and resistance mechanisms toward AmB are still poorly understood. This paper reports a large-scale comparative proteomic study in the context of AmB resistance. Quantitative proteomics using stable isotope labeling of amino acids in cell culture (SILAC) was used to better characterize cytoplasmic and membrane-enriched (ME) proteomes of the in vitro generated Leishmania infantum AmB resistant mutant AmB1000.1. In total, 97 individual proteins were found as differentially expressed between the mutant and its parental sensitive strain (WT). More than half of these proteins were either metabolic enzymes or involved in transcription or translation processes. Key energetic pathways such as glycolysis and TCA cycle were up-regulated in the mutant. Interestingly, many proteins involved in reactive oxygen species (ROS) scavenging and heat-shock proteins were also up-regulated in the resistant mutant. This work provides a basis for further investigations to understand the roles of proteins differentially expressed in relation with AmB resistance.


A key role for poly(ADP-ribose) polymerase 3 in ectodermal specification and neural crest development.

  • Michèle Rouleau‎ et al.
  • PloS one‎
  • 2011‎

The PARP family member poly(ADP-ribose) polymerase 3 (PARP3) is structurally related to the well characterized PARP1 that orchestrates cellular responses to DNA strand breaks and cell death by the synthesis of poly(ADP-ribose). In contrast to PARP1 and PARP2, the functions of PARP3 are undefined. Here, we reveal critical functions for PARP3 during vertebrate development.


Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes.

  • Jean-Philippe Gagné‎ et al.
  • Nucleic acids research‎
  • 2008‎

Poly(ADP-ribose) (pADPr) is a polymer assembled from the enzymatic polymerization of the ADP-ribosyl moiety of NAD by poly(ADP-ribose) polymerases (PARPs). The dynamic turnover of pADPr within the cell is essential for a number of cellular processes including progression through the cell cycle, DNA repair and the maintenance of genomic integrity, and apoptosis. In spite of the considerable advances in the knowledge of the physiological conditions modulated by poly(ADP-ribosyl)ation reactions, and notwithstanding the fact that pADPr can play a role of mediator in a wide spectrum of biological processes, few pADPr binding proteins have been identified so far. In this study, refined in silico prediction of pADPr binding proteins and large-scale mass spectrometry-based proteome analysis of pADPr binding proteins were used to establish a comprehensive repertoire of pADPr-associated proteins. Visualization and modeling of these pADPr-associated proteins in networks not only reflect the widespread involvement of poly(ADP-ribosyl)ation in several pathways but also identify protein targets that could shed new light on the regulatory functions of pADPr in normal physiological conditions as well as after exposure to genotoxic stimuli.


Single-Center Overview of Pediatric Monogenic Autoinflammatory Diseases in the Past Decade: A Summary and Beyond.

  • Wei Wang‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Objective: Monogenic autoinflammatory diseases (AIDs) are inborn disorders caused by innate immunity dysregulation and characterized by robust autoinflammation. We aimed to present the phenotypes and genotypes of Chinese pediatric monogenic AID patients. Methods: A total of 288 pediatric patients clinically suspected to have monogenic AIDs at the Department of Pediatrics of Peking Union Medical College Hospital between November 2008 and May 2019 were genotyped by Sanger sequencing, and/or gene panel sequencing and/or whole exome sequencing. Final definite diagnoses were made when the phenotypes and genotypes were mutually verified. Results: Of the 288 patients, 79 (27.4%) were diagnosed with 18 kinds of monogenic AIDs, including 33 patients with inflammasomopathies, 38 patients with non-inflammasome related conditions, and eight patients with type 1 interferonopathies. Main clinical features were skin disorders (76%), musculoskeletal problems (66%), fever (62%), growth retardation (33%), gastrointestinal tract abnormalities (25%), central nervous system abnormalities (15%), eye disorders (16%), ear problems (9%), and cardiopulmonary disorders (8%). The causative genes were ACP5, ADA2, ADAR1, IFIH1, LPIN2, MEFV, MVK, NLRC4, NLRP3, NLRP12, NOD2, PLCG2, PSMB8, PSTPIP1, TMEM173, TNFAIP3, TNFRSF1A, and TREX1. Conclusions: The present study summarized both clinical and genetic characteristics of 18 kinds of monogenic AIDs found in the largest pediatric AID center over the past decade, with fever, skin problems, and musculoskeletal system disorders being the most prevalent clinical features. Many of the mutations were newly discovered. This is by far the first and largest monogenic AID report in Chinese pediatric population and also a catalog of the phenotypic and genotypic features among these patients.


The SARS-CoV-2 Conserved Macrodomain Is a Mono-ADP-Ribosylhydrolase.

  • Yousef M O Alhammad‎ et al.
  • Journal of virology‎
  • 2021‎

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within nonstructural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) Mac1 domains exhibit similar structural folds, and all 3 proteins bound to ADP-ribose with affinities in the low micromolar range. Importantly, using ADP-ribose-detecting binding reagents in both a gel-based assay and novel enzyme-linked immunosorbent assays (ELISAs), we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate than the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity.IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused more than 1.2 million deaths worldwide. With no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic posttranslational process that is increasingly being recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose and describe its ADP-ribose binding and hydrolysis activities in direct comparison to those of SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.


ZNF432 stimulates PARylation and inhibits DNA resection to balance PARPi sensitivity and resistance.

  • Julia O'Sullivan‎ et al.
  • Nucleic acids research‎
  • 2023‎

Zinc finger (ZNF) motifs are some of the most frequently occurring domains in the human genome. It was only recently that ZNF proteins emerged as key regulators of genome integrity in mammalian cells. In this study, we report a new role for the Krüppel-type ZNF-containing protein ZNF432 as a novel poly(ADP-ribose) (PAR) reader that regulates the DNA damage response. We show that ZNF432 is recruited to DNA lesions via DNA- and PAR-dependent mechanisms. Remarkably, ZNF432 stimulates PARP-1 activity in vitro and in cellulo. Knockdown of ZNF432 inhibits phospho-DNA-PKcs and increases RAD51 foci formation following irradiation. Moreover, purified ZNF432 preferentially binds single-stranded DNA and impairs EXO1-mediated DNA resection. Consequently, the loss of ZNF432 in a cellular system leads to resistance to PARP inhibitors while its overexpression results in sensitivity. Taken together, our results support the emerging concept that ZNF-containing proteins can modulate PARylation, which can be embodied by the pivotal role of ZNF432 to finely balance the outcome of PARPi response by regulating homologous recombination.


Crystallographic and biochemical analysis of the mouse poly(ADP-ribose) glycohydrolase.

  • Zhizhi Wang‎ et al.
  • PloS one‎
  • 2014‎

Protein poly(ADP-ribosyl)ation (PARylation) regulates a number of important cellular processes. Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme responsible for hydrolyzing the poly(ADP-ribose) (PAR) polymer in vivo. Here we report crystal structures of the mouse PARG (mPARG) catalytic domain, its complexes with ADP-ribose (ADPr) and a PARG inhibitor ADP-HPD, as well as four PARG catalytic residues mutants. With these structures and biochemical analysis of 20 mPARG mutants, we provide a structural basis for understanding how the PAR polymer is recognized and hydrolyzed by mPARG. The structures and activity complementation experiment also suggest how the N-terminal flexible peptide preceding the PARG catalytic domain may regulate the enzymatic activity of PARG. This study contributes to our understanding of PARG catalytic and regulatory mechanisms as well as the rational design of PARG inhibitors.


Proteomics reveals a switch in CDK1-associated proteins upon M-phase exit during the Xenopus laevis oocyte to embryo transition.

  • Gaëlle Marteil‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2012‎

Cyclin-dependent kinase 1 (CDK1) is a major M-phase kinase which requires the binding to a regulatory protein, Cyclin B, to be active. CDK1/Cyclin B complex is called M-phase promoting factor (MPF) for its key role in controlling both meiotic and mitotic M-phase of the cell cycle. CDK1 inactivation is necessary for oocyte activation and initiation of embryo development. This complex process requires both Cyclin B polyubiquitination and proteosomal degradation via the ubiquitin-conjugation pathway, followed by the dephosphorylation of the monomeric CDK1 on Thr161. Previous proteomic analyses revealed a number of CDK1-associated proteins in human HeLa cells. It is, however, unknown whether specific partners are involved in CDK1 inactivation upon M-phase exit. To better understand CDK1 regulation during MII-arrest and oocyte activation, we immunoprecipitated (IPed) CDK1 together with its associated proteins from M-phase-arrested and M-phase-exiting Xenopus laevis oocytes. A mass spectrometry (MS) analysis revealed a number of new putative CDK1 partners. Most importantly, the composition of the CDK1-associated complex changed rapidly during M-phase exit. Additionally, an analysis of CDK1 complexes precipitated with beads covered with p9 protein, a fission yeast suc1 homologue well known for its high affinity for CDKs, was performed to identify the most abundant proteins associated with CDK1. The screen was auto-validated by identification of: (i) two forms of CDK1: Cdc2A and B, (ii) a set of Cyclins B with clearly diminishing number of peptides identified upon M-phase exit, (iii) a number of known CDK1 substrates (e.g. peroxiredoxine) and partners (e.g. HSPA8, a member of the HSP70 family) both in IP and in p9 precipitated pellets. In IP samples we also identified chaperones, which can modulate CDK1 three-dimensional structure, as well as calcineurin, a protein necessary for successful oocyte activation. These results shed a new light on CDK1 regulation via a dynamic change in the composition of the protein complex upon M-phase exit and the oocyte to embryo transition.


Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress.

  • Jean-Philippe Gagné‎ et al.
  • Nucleic acids research‎
  • 2012‎

Upon DNA damage induction, DNA-dependent poly(ADP-ribose) polymerases (PARPs) synthesize an anionic poly(ADP-ribose) (pADPr) scaffold to which several proteins bind with the subsequent formation of pADPr-associated multiprotein complexes. We have used a combination of affinity-purification methods and proteomics approaches to isolate these complexes and assess protein dynamics with respect to pADPr metabolism. As a first approach, we developed a substrate trapping strategy by which we demonstrate that a catalytically inactive Poly(ADP-ribose) glycohydrolase (PARG) mutant can act as a physiologically selective bait for the isolation of specific pADPr-binding proteins through its macrodomain-like domain. In addition to antibody-mediated affinity-purification methods, we used a pADPr macrodomain affinity resin to recover pADPr-binding proteins and their complexes. Second, we designed a time course experiment to explore the changes in the composition of pADPr-containing multiprotein complexes in response to alkylating DNA damage-mediated PARP activation. Spectral count clustering based on GeLC-MS/MS analysis was complemented with further analyses using high precision quantitative proteomics through isobaric tag for relative and absolute quantitation (iTRAQ)- and Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics. Here, we present a valuable resource in the interpretation of systems biology of the DNA damage response network in the context of poly(ADP-ribosyl)ation and provide a basis for subsequent investigations of pADPr-binding protein candidates.


CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage.

  • Ismail Hassan Ismail‎ et al.
  • Nucleic acids research‎
  • 2012‎

Polycomb group (PcG) proteins are involved in epigenetic silencing where they function as major determinants of cell identity, stem cell pluripotency and the epigenetic gene silencing involved in cancer development. Recently numerous PcG proteins, including CBX4, have been shown to accumulate at sites of DNA damage. However, it remains unclear whether or not CBX4 or its E3 sumo ligase activity is directly involved in the DNA damage response (DDR). Here we define a novel role for CBX4 as an early DDR protein that mediates SUMO conjugation at sites of DNA lesions. DNA damage stimulates sumoylation of BMI1 by CBX4 at lysine 88, which is required for the accumulation of BMI1 at DNA damage sites. Moreover, we establish that CBX4 recruitment to the sites of laser micro-irradiation-induced DNA damage requires PARP activity but does not require H2AX, RNF8, BMI1 nor PI-3-related kinases. The importance of CBX4 in the DDR was confirmed by the depletion of CBX4, which resulted in decreased cellular resistance to ionizing radiation. Our results reveal a direct role for CBX4 in the DDR pathway.


Direct Phosphorylation of SRC Homology 3 Domains by Tyrosine Kinase Receptors Disassembles Ligand-Induced Signaling Networks.

  • Ugo Dionne‎ et al.
  • Molecular cell‎
  • 2018‎

Phosphotyrosine (pTyr) signaling has evolved into a key cell-to-cell communication system. Activated receptor tyrosine kinases (RTKs) initiate several pTyr-dependent signaling networks by creating the docking sites required for the assembly of protein complexes. However, the mechanisms leading to network disassembly and its consequence on signal transduction remain essentially unknown. We show that activated RTKs terminate downstream signaling via the direct phosphorylation of an evolutionarily conserved Tyr present in most SRC homology (SH) 3 domains, which are often part of key hub proteins for RTK-dependent signaling. We demonstrate that the direct EPHA4 RTK phosphorylation of adaptor protein NCK SH3s at these sites results in the collapse of signaling networks and abrogates their function. We also reveal that this negative regulation mechanism is shared by other RTKs. Our findings uncover a conserved mechanism through which RTKs rapidly and reversibly terminate downstream signaling while remaining in a catalytically active state on the plasma membrane.


PARPs database: a LIMS systems for protein-protein interaction data mining or laboratory information management system.

  • Arnaud Droit‎ et al.
  • BMC bioinformatics‎
  • 2007‎

In the "post-genome" era, mass spectrometry (MS) has become an important method for the analysis of proteins and the rapid advancement of this technique, in combination with other proteomics methods, results in an increasing amount of proteome data. This data must be archived and analysed using specialized bioinformatics tools.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: