Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer.

  • Ovarian Cancer Association Consortium, Breast Cancer Association Consortium, and Consortium of Modifiers of BRCA1 and BRCA2‎ et al.
  • Gynecologic oncology‎
  • 2016‎

Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370.


Combination simvastatin and metformin synergistically inhibits endometrial cancer cell growth.

  • Josephine S Kim‎ et al.
  • Gynecologic oncology‎
  • 2019‎

Recent data show that simvastatin (SIM) and metformin (MET) have anti-proliferative effects in endometrial cancer cells. The combination (MET+SIM) inhibits tumor growth and metastasis in prostate cancer cells which possess similar molecular alterations to many early endometrial cancers. We tested the hypothesis that the anti-proliferative effects of MET+SIM in endometrial cancer cells would be greater than the effects of each agent alone.


Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers.

  • Christopher Hakkaart‎ et al.
  • Communications biology‎
  • 2022‎

The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.


Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers.

  • Ignacio Blanco‎ et al.
  • PloS one‎
  • 2015‎

While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04-1.15, p = 1.9 x 10(-4) (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03-1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.


Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

  • Elena Vigorito‎ et al.
  • PloS one‎
  • 2016‎

Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.


Progesterone potentiates the growth inhibitory effects of calcitriol in endometrial cancer via suppression of CYP24A1.

  • Amber A Bokhari‎ et al.
  • Oncotarget‎
  • 2016‎

Here, we evaluated the expression of CYP24A1, a protein that inactivates vitamin D in tissues. CYP24A1 expression was increased in advanced-stage endometrial tumors compared to normal tissues. Similarly, endometrial cancer cells expressed higher levels of CYP24A1 than immortalized endometrial epithelial cells. RT-PCR and Western blotting were used to examine CYP24A1 mRNA and protein levels in endometrial cancer cells after 8, 24, 72, and 120 h of exposure to progesterone, progestin derivatives and calcitriol, either alone or in combination. Progestins inhibited calcitriol-induced expression of CYP24A1 and splice variant CYP24SV mRNA and protein in cancer cells. Furthermore, actinomycin D, but not cycloheximide, blocked calcitriol-induced CYP24A1 splicing. siRNA-induced knockdown of CYP24A1 expression sensitized endometrial cancer cells to calcitriol-induced growth inhibition. These data suggest that CYP24A1 overexpression reduces the antitumor effects of calcitriol in cancer cells and that progestins may be beneficial for maintaining calcitriol's anti-endometrial cancer activity.


Progesterone and calcitriol reduce invasive potential of endometrial cancer cells by targeting ARF6, NEDD9 and MT1-MMP.

  • Sana Waheed‎ et al.
  • Oncotarget‎
  • 2017‎

Previously, we have demonstrated that progesterone and calcitriol synergistically inhibit growth of endometrial and ovarian cancer by enhancing apoptosis and causing cell cycle arrest. Metastasis is the main reason of mortality in cancer patients. Activation of ADP-Ribosylation Factor 6 (ARF6), Neural Precursor cell expressed Developmentally Downregulated 9 (NEDD9), and Membrane-Type-1 Matrix Metalloproteinase (MT1-MMP) have been implicated in promoting tumor growth and metastasis. We examined the effects of progesterone, calcitriol and progesterone-calcitriol combination on metastasis promoting proteins in endometrial cancer. Expression of ARF6, NEDD9, and MT1-MMP was enhanced in advanced-stage endometrial tumors and in cancer cell lines compared to normal tissues and immortalized EM-E6/E7-TERT endometrial epithelial cells. Knockdown of these proteins significantly inhibited the invasiveness of the cancer cells. The expression levels of all three proteins was reduced with progesterone and progesterone-calcitriol combination treatment, whereas calcitriol alone showed no effect on their expression but moderately decreased MT1-MMP activity. Fluorescence microscopy showed membrane expression of MT1-MMP in vehicle and calcitriol-treated endometrial cancer cells. However, progesterone and calcitriol-progesterone combination treatment revealed MT1-MMP in the cytoplasm. Furthermore, progesterone and calcitriol reduced the activity of MT1-MMP, MMP-9, and MMP-2. In addition, invadopodia regulatory proteins were attenuated in both progesterone and progesterone-calcitriol combination treated cells as well as in MT1-MMP knockdown cells. Thus, targeting the aberrant MT1-MMP signaling with progesterone-calcitriol may be a novel approach to impede MT1-MMP mediated cancer dissemination and may have therapeutic benefits for endometrial cancer patients.


Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers.

  • Karoline B Kuchenbaecker‎ et al.
  • Breast cancer research : BCR‎
  • 2014‎

More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers.


Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

  • Karoline B Kuchenbaecker‎ et al.
  • Nature genetics‎
  • 2015‎

Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.


Sub-millimeter endoscope demonstrates feasibility of in vivo reflectance imaging, fluorescence imaging, and cell collection in the fallopian tubes.

  • Ricky Cordova‎ et al.
  • Journal of biomedical optics‎
  • 2021‎

Most cases of high-grade serous ovarian carcinoma originate as serous tubal intraepithelial carcinoma (STIC) lesions in the fallopian tube epithelium (FTE), enabling early endoscopic detection.


Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.

  • Fergus J Couch‎ et al.
  • PLoS genetics‎
  • 2013‎

BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 × 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.


Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3.

  • Yosr Hamdi‎ et al.
  • Breast cancer research and treatment‎
  • 2017‎

Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways.


TGF-β signaling proteins and CYP24A1 may serve as surrogate markers for progesterone calcitriol treatment in ovarian and endometrial cancers of different histological types.

  • Ana Paucarmayta‎ et al.
  • Translational cancer research‎
  • 2019‎

Strategies are needed to coordinately block drivers and induce suppressors of cancer to reduce incidence and improve outcomes for individuals with inherited or acquired risk. We previously reported the chemopreventive and therapeutic efficacy of the combination of progestin and calcitriol in transformed and malignant endometrioid endometrial cancer (EC) and in ovarian cancer models involving attenuated expression of TGF-β signaling proteins and progestin-mediated inhibition of calcitriol-induced CYP24A1 expression. This study aims to expand the applications for this combination to other subtypes of endometrial and ovarian cancers, including those with mutations in ARID1A or PIK3CA, DNA mismatch repair (MMR) deficiency or BRCA1 null status.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: