Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28 papers

A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria.

  • Ji Geng‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Despite advances in treatment, malignant glioma commonly exhibits recurrence, subsequently leading to a poor prognosis. As manganese (Mn) compounds can be transported by the transferrin‑transferrin receptor system, the present study synthesized and examined the potential use of Adpa‑Mn as a novel antitumor agent. Adpa‑Mn time and dose‑dependently inhibited U251 and C6 cell proliferation; however, it had little effect on normal astrocytes. Apoptosis was significantly elevated following treatment with Adpa‑Mn, as detected by chromatin condensation, Annexin V/propidium iodide staining, cytochrome c release from mitochondria to the cytoplasm, and the activation of caspases‑9, ‑7 and ‑3 and poly (ADP‑ribose) polymerase. In addition, Adpa‑Mn enhanced fluorescence intensity of monodansylcadaverine and elevated the expression levels of the autophagy‑related protein microtubule‑associated protein 1 light chain 3. Pretreatment with the autophagy inhibitors 3‑methyladenine and chloroquine enhanced Adpa‑Mn‑induced cell inhibition, thus indicating that autophagy has an essential role in this process. Furthermore, evidence of mitochondrial dysfunction was detected in the Adpa‑Mn‑treated group, including disrupted membrane potential, elevated levels of reactive oxygen species (ROS) and depleted adenosine triphosphate. Conversely, treatment with the mitochondrial permeability transition inhibitor cyclosporin A reversed Adpa‑Mn‑induced ROS production, mitochondrial damage and cell apoptosis, thus suggesting that Adpa‑Mn may target the mitochondria. Taken together, these data suggested that Adpa‑Mn may be considered for use as a novel anti‑glioma therapeutic option.


Rottlerin promotes autophagy and apoptosis in gastric cancer cell lines.

  • Jun Song‎ et al.
  • Molecular medicine reports‎
  • 2018‎

It is widely accepted that apoptosis is closely associated with cancer cell death. However, whether autophagy induces tumor cell death has not been fully elucidated. Various studies have discussed the antitumor properties of rottlerin in human malignancies. The current study aimed to investigate the effects of rottlerin, a natural product isolated from the kamala tree (Mallotus philipensis), on growth inhibition and autophagy in gastric cancer (GC) cell lines in vitro. The results of the present study demonstrated that rottlerin suppressed cell growth, induced autophagy and apoptosis, and reduced migration and invasion in the SGC‑7901 and MGC‑803 GC cell lines. Furthermore, rottlerin led to microtubule‑associated protein 1 light chain 3β‑II augmentation and the enrichment of autophagosomes. In addition, the protein expression levels of mechanistic target of rapamycin kinase and S‑phase kinase‑associated protein 2 were downregulated in GC cells following rottlerin treatment, which is associated with autophagy. The protein levels of caspase‑3, cleaved‑caspase‑3, total poly (ADP‑ribose) polymerase (PARP) and cleaved‑PARP exhibited no marked alterations in the GC cells following rottlerin treatment, indicating that caspases were likely not involved in rottlerin‑induced GC apoptosis. In summary, the results of the present study indicate that rottlerin may inhibit invasion and promote apoptosis in GC cells, which may be mediated by the activation of autophagy. Therefore, rottlerin may be of value in the treatment of GC.


Sinomenine alleviates dextran sulfate sodium‑induced colitis via the Nrf2/NQO‑1 signaling pathway.

  • Yan Zhou‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Sinomenine (SIN), a pure alkaloid isolated from Sinomenium acutum, has been widely used in arthritis for its anti‑inflammatory effect, but little is known about the effect of SIN on human ulcerative colitis (UC). In the present study, the effect and mechanism of SIN was examined in a dextran sulfate sodium (DSS)‑induced murine colitis model, which mimics human UC. Oral administration of SIN significantly suppressed the elevated disease activity index and ameliorated colonic histological damage in a DSS‑induced colitis model. Tumor necrosis factor‑α, interleukin‑6 and inducible nitric oxide synthase levels were also reduced as detected by reverse transcription‑quantitative polymerase chain reaction. In addition, SIN reversed the decreased colon length and colonic superoxide dismutase activity. Furthermore, western blot analysis revealed that nuclear factor‑erythroid 2‑related factor 2 (Nrf2) and its downstream genes, heme oxygenase‑1 and NADP(H) quinone oxidoreductase 1 (NQO‑1), were markedly activated by SIN. The current results indicated that SIN alleviated DSS‑induced colitis in mice, which may be due to its antioxidant properties and was at least in part dependent on the Nrf2/NQO‑1 signaling pathway. Therefore, SIN may have potential applications as a protective drug for patients with UC.


Therapeutic effect of transplantation of human bone marrow‑derived mesenchymal stem cells on neuron regeneration in a rat model of middle cerebral artery occlusion.

  • Ping Xie‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Human bone marrow‑derived mesenchymal stromal cells (hBMSCs) have been revealed to be beneficial for the regeneration of tissues and cells in several diseases. The present study aimed to elucidate the mechanisms underlying the effect of hBMSC transplantation on neuron regeneration in a rat model of middle cerebral artery occlusion (MCAO). The hBMSCs were isolated, cultured and identified. A rat model of MCAO was induced via the modified Longa method. Neurological severity scores (NSS) were adopted for the evaluation of neuronal function in the model rats after cell transplantation. Next, the expression levels of nestin, β‑III‑tubulin (β‑III‑Tub), glial fibrillary acidic protein (GFAP), HNA and neuronal nuclear antigen (NeuN) were examined, as well as the positive expression rates of human neutrophil alloantigen (HNA), nestin, NeuN, β‑III‑Tub and GFAP. The NSS, as well as the mRNA and protein expression of nestin, decreased at the 1st, 2nd, 4 and 8th weeks, while the mRNA and protein expression of NeuN, β‑III‑Tub and GFAP increased with time. In addition, after treatment, the MCAO rats showed decreased NSS and mRNA and protein expression of nestin, but elevated mRNA and protein expression of NeuN, β‑III‑Tub and GFAP at the 2nd, 4 and 8th weeks, and decreased positive expression of HNA and nestin with enhanced expression of NeuN, β‑III‑Tub and GFAP. Therefore, the present findings demonstrated that hBMSC transplantation triggered the formation of nerve cells and enhanced neuronal function in a rat model of MCAO.


Betaine attenuates chronic alcohol‑induced fatty liver by broadly regulating hepatic lipid metabolism.

  • Wenjuan Yang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Betaine has previously been demonstrated to protect the liver against alcohol‑induced fat accumulation. However, the mechanism through which betaine affects alcohol‑induced hepatic lipid metabolic disorders has not been extensively studied. The present study aimed to investigate the effect of betaine on alcoholic simple fatty liver and hepatic lipid metabolism disorders. A total of 36 rats were randomly divided into control, ethanol and ethanol + betaine groups. Liver function, morphological alterations, lipid content and tumor necrosis factor (TNF)‑α levels were determined. Hepatic expression levels of diacylglycerol acyltransferase (DGAT) 1, DGAT2, sterol regulatory element binding protein (SREBP)‑1c, SREBP‑2, fatty acid synthase (FAS), 3‑hydroxy‑3‑methyl‑glutaryl (HMG)‑CoA reductase, peroxisome proliferator-activated receptor λ coactivator (PGC)‑1α, adiponectin receptor (AdipoR) 1 and AdipoR2 were quantified. Serum and adipose tissue adiponectin levels were assessed using an enzyme‑linked immunoassay. The results demonstrated that alcohol‑induced ultramicrostructural alterations in hepatocytes, including the presence of lipid droplets and swollen mitochondria, were attenuated by betaine. Hepatic triglyceride, free fatty acid, total cholesterol and cholesterol ester contents and the expression of DGAT1, DGAT2, SREBP‑1c, SREBP‑2, FAS and HMG‑CoA reductase were increased following ethanol consumption, however were maintained at control levels following betaine supplementation. Alcohol‑induced decreases in hepatic PGC‑1α mRNA levels and serum and adipose tissue adiponectin concentrations were prevented by betaine. The downregulation of hepatic AdipoR1 which resulted from alcohol exposure was partially attenuated by betaine. No significant differences in liver function, TNF‑α, phospholipid and AdipoR2 levels were observed among the control, ethanol and ethanol + betaine groups. Overall, these results indicated that betaine attenuated the alcoholic simple fatty liver by improving hepatic lipid metabolism via suppression of DGAT1, DGAT2, SREBP‑1c, FAS, SREBP‑2 and HMG‑CoA reductase and upregulation of PGC‑1α.


Effects of signaling pathway inhibitors on hematopoietic stem cells.

  • Yuyu Jiang‎ et al.
  • Molecular medicine reports‎
  • 2021‎

While there are numerous small molecule inhibitory drugs available for a wide range of signalling pathways, at present, they are generally not used in combination in clinical settings. Previous reports have reported that the effects of glycogen synthase kinase (GSK)3β, p38MAPK, mTOR and histone deacetylase signaling combined together to suppress the stem‑like nature of hematopoietic stem cells (HSCs), driving these cells to differentiate, cease proliferating and thereby impairing normal hematopoietic functionality. The present study aimed to determine the effect of HDACs, mTOR, GSK‑3β and p38MAPK inhibitor combinations on the efficient expansion of HSCs using flow cytometry. Moreover, it specifically aimed to determine how inhibitors of the GSK3β signaling pathway, in combination with inhibitors of P38MAPK and mTOR signaling or histone deacetylase (HDAC) inhibitors, could affect HSC expansion, with the goal of identifying novel combination strategies useful for the expansion of HSCs. The results indicated that p38MAPK and/or GSK3β inhibitors increased Lin‑ cell and Lin‑Sca‑1+c‑kit+ (LSK) cell numbers in vitro. Taken together, these results suggested that a combination of p38MAPK and GSK3β signaling may regulate HSC differentiation in vitro. These findings further indicated that the suppression of p38MAPK and/or GSK3β signalling may modulate HSC differentiation and self‑renewal to enhance HSC expansion.


Long non‑coding RNA HOTTIP enhances the fibrosis of lung tissues by regulating the miR‑744‑5p/PTBP1 signaling axis.

  • Jing Li‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Fibrosis of lung tissue can induce the occurrence and development of numerous types of lung disease. The expression levels of the long non‑coding RNA (lncRNA) HOXA distal transcript antisense RNA (HOTTIP) have been reported to be upregulated during the development of fibrosis in liver tissues, which subsequently activated hepatic stellate cells. However, whether the lncRNA HOTTIP participates in the occurrence and development of lung fibrosis remains unknown. The present study aimed to investigate the role of lncRNA HOTTIP in lung fibrosis and its potential mechanism. In the present study, A549 cells were stimulated with TGF‑β1 to induce lung fibrosis in vitro. A549 was transfected with short hairpin RNA‑HOTTP, overexpression‑polypyrimidine tract binding protein 1 (PTBP1), microRNA (miR)‑744‑5p mimic or miR‑744‑5p to regulate gene expression. Cell proliferation and migration were determined using 5'‑ethynl‑2'‑deoxyuridine and wound healing assays, respectively. The expression levels of α‑smooth muscle actin, collagen I, collagen III and fibronectin 1 were analyzed using western blotting. starBase was used to identify molecules that may interact with the lncRNA HOTTIP and dual luciferase reporter assays were used to validate the findings. Moreover, an in vivo lung fibrosis model was established by bleomycin induction in mice. Histological injury was observed using hematoxylin and eosin and masson staining. The results of the present study revealed that the proliferation and migration of A549 cells were both suppressed following the knockdown of HOTTIP. The lncRNA HOTTIP was found to target and downregulate the expression levels of miR‑744‑5p. The overexpression of miR‑744‑5p inhibited the proliferation and migration of A549 cells. Furthermore, miR‑744‑5p targeted and downregulated the expression levels of PTBP1. It was subsequently demonstrated that the overexpression of PTBP1 rescued miR‑744‑5p‑induced suppression of the proliferation and migration of A549 cells. The knockdown of lncRNA HOTTIP expression also relieved the fibrosis of the lung tissues of mice. In conclusion, the results of the present study suggested that the lncRNA HOTTIP may promote the fibrosis of lung tissues by downregulating the expression levels of miR‑744‑5p and upregulating the expression levels of PTBP1.


Caffeine induces sustained apoptosis of human gastric cancer cells by activating the caspase‑9/caspase‑3 signalling pathway.

  • Hanyang Liu‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Caffeine is one of the most widely consumed substances found in beverages, and has demonstrated anticancer effects in several types of cancer. The present study aimed to examine the anticancer effects of caffeine on gastric cancer (GC) cells (MGC‑803 and SGC‑7901) in vitro, and to determine whether the apoptosis‑related caspase‑9/-3 pathway is associated with these effects. The sustained antiproliferative effects of caffeine on gastric cancer were also investigated. GC cell viability and proliferation were evaluated using cell counting and colony forming assays, following treatment with various concentrations of caffeine. Flow cytometry was performed to assess cell cycle dynamics and apoptosis. Western blot analysis was conducted to detect the activity of the caspase‑9/-3 pathway. The results indicated that caffeine treatment significantly suppressed GC cell growth and viability and induced apoptosis by activating the caspase‑9/-3 pathway. Furthermore, the anticancer effects of caffeine appeared to be sustained, as the caspase‑9/-3 pathway remained active following caffeine withdrawal. In conclusion, caffeine may function as a sustained anticancer agent by activating the caspase‑9/-3 pathway, which indicates that it may be useful as a therapeutic candidate in gastric cancer.


Proliferation and differentiation of direct co‑culture of bone marrow mesenchymal stem cells and pigmented cells from the ciliary margin.

  • Yan Li‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Damage of retinal ganglion cells (RGCs) is the major consequence of glaucoma and regeneration of RGCs is extremely difficult once the damage has occurred. Retinal stem cells (RSCs) are considered an ideal choice for RGC regeneration. Pigmented cells from the ciliary margin (PCMs) have great retinal differentiation potential and may be an ideal RSC candidate. However, the ciliary margin is too small, so the number of cells that can be obtained is limited. Bone marrow‑derived mesenchymal stem cells (BMMSCs) are another type of stem cell that have been previously investigated for RGC regeneration. BMMSCs expand sufficiently, whereas the retinal differentiation of BMMSCs is insufficient. The aim of the present study was to investigate whether the co‑culture of PCMs and BMMSCs may combine the advantages of both cell types to establish a novel and effective stem cell source for RGC regeneration. Primary rat PCMs and BMMSCs were isolated and co‑cultured. Cell growth was observed by an inverted microscope and proliferation was monitored by an MTT assay. Cell cycle analysis was performed by using a flow cytometer, while the expression of the photoreceptor‑specific homeobox gene (cone‑rod homeobox, Crx) was determined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. In addition, retinal differentiation was confirmed by immunofluorescence staining of major markers of retinal differentiation, including rhodopsin, visual system homeobox 2 and heparin sulfate. The co‑cultured cells expanded successfully, in a similar way to BMMSCs. In addition, the expression of Crx and retinal markers were significantly upregulated following BMMSC and PCM co‑culture. The results of the present study demonstrated that the co‑culture of BMMSCs and PCMs may be used as a source of RSCs.


Systematic analysis of mRNA expression profiles in NSCLC cell lines to screen metastasis-related genes.

  • Ying Liu‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Lung cancer is the most prevalent cancer in humans and has the lowest survival outcomes due to its high metastatic potential. The aim of the present study was to screen for metastasis‑related genes (MRGs) by investigating the differential expression genes (DEGs) identified by the mRNA expression profiles in SPC‑A‑1sci (highly metastatic) and SPC-A-1 (parental) cells. DEGs were screened using Genespring software. Gene Ontology and pathway enrichment analyses of these DEGs were performed. Interaction networks between the proteins encoded by the DEGs were identified using the database BioGRID and were visualized by Cytoscape. Modular analysis of the protein‑protein interaction network was performed in CFinder. Among these DEGs, the expression levels of 18 genes were examined in SPC‑A‑1sci and SPC‑A‑1 cell lines with reverse transcription‑quantitative polymerase chain reaction, and 10 of the 18 genes were assessed by western blotting to validate the results of the microarray. Furthermore, the role of metallothionein 1X (MT1X) in non‑small cell lung cancer was explored in functional assays and 72 pairs of clinical samples in vitro. Finally, 4,838 DEGs were screened, including 798 upregulated and 4,040 downregulated genes. The significantly enriched functions included gene expression, cytosol and poly‑(A) RNA binding, and the most enriched pathway was biosynthesis of antibiotics. Furthermore, MT1X was revealed to promote the migration and invasion ability in SPC‑A‑1sci and PC‑9 lung cancer cell lines. Therefore, MT1X was identified as a candidate MRG through systematic analysis in the present microarray, which was demonstrated to offer potential reference value in screening MRGs.


Upregulation of miR‑335 exerts protective effects against sepsis‑induced myocardial injury.

  • Xian Long‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Septicemia is associated with excessive inflammation, oxidative stress and apoptosis, causing myocardial injury that results in high mortality and disability rates worldwide. The abnormal expression of multiple microRNAs (miRNAs/miRs) is associated with more severe sepsis‑induced myocardial injury (SIMI) and miR‑335 has been shown to protect cardiomyocytes from oxidative stress. The present study aimed to investigate the role of miR‑335 in SIMI. An SIMI model was established by cecal ligation and puncture (CLP) in mice. An miRNA‑335 precursor (pre‑miR‑335) was transfected to accelerate miR‑335 expression and an miR‑335 inhibitor (anti‑miR‑335) was used to inhibit miR‑335 expression. CLP or sham surgery was performed on pre‑miR‑335, anti‑miR‑335 and wild‑type mice and miR‑335 expression was determined by reverse transcription‑quantitative PCR. Inflammatory factors (TNF‑α, IL‑6 and IL‑10) and troponin (cTNI), brain natriuretic peptide (BNP), creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were assessed using commercial kits. Apoptosis was detected by flow cytometry and cardiac function was assessed using a Langendorff isolated cardiac perfusion system. miR‑335 expression was upregulated and an elevation in inflammatory factors and cTNI, BNP, CK, LDH and AST was observed. Compared with the wild‑type control group, pre‑miR‑335 mice treated with CLP exhibited significantly reduced left ventricular development pressure, maximum pressure increased reduction rates, as well as decreased levels of TNF‑α, IL‑6 and IL‑10, myocardial injury and apoptosis; by contrast, these features were amplified in CLP‑treated anti‑miR‑335 mice. In conclusion, the upregulation of miR‑335 exerted ameliorative effects on myocardial injury following sepsis and may indicate a novel therapeutic intervention for SIMI.


Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth, bone marrow, gingival tissue, and umbilical cord.

  • Jing Li‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Different sources of mesenchymal stem cells (MSCs) may differ in their biological characteristics, which are important for their clinical application. In the present study, MSCs were isolated from human exfoliated deciduous teeth (SHED), bone marrow, gingival tissue and umbilical cord tissue, and their biological characteristics including surface markers, proliferation capacity, tumorigenicity and immunogenicity were analyzed by flow cytometric analysis, ELISA and co‑culture with human lymphocytes, respectively. The results indicated that all four types of stem cells obtained from different sources expressed MSC surface markers, and they did not show tumorigenicity either in vivo or in vitro. Stem cells from SHED exhibited the strongest proliferation capacity. Umbilical cord‑derived MSCs displayed the strongest immunomodulatory ability, while bone marrow MSCs exhibited the best antigen‑presenting potential in response to interferon‑γ stimulation. These results provide information on MSCs derived from different tissues, which may be helpful in their clinical application.


Fully human HER2/cluster of differentiation 3 bispecific antibody triggers potent and specific cytotoxicity of T lymphocytes against breast cancer.

  • Yan Zhou‎ et al.
  • Molecular medicine reports‎
  • 2015‎

The use of a bispecific antibody (BsAb) is a promising and highly specific approach to cancer therapy. In the present study, a fully human recombinant single chain variable fragment BsAb against human epidermal growth factor receptor (HER)2 and cluster of differentiation (CD)3 was constructed with the aim of developing an effective treatment for breast cancer. HER2/CD3 BsAb was expressed in Chinese hamster ovary cells and purified via nickel column chromatography. Flow cytometry revealed that the HER2/CD3 BsAb was able to specifically bind to HER2 and CD3‑positive cells. HER2/CD3 BsAb was able to stimulate T-cell activation and induce the lysis of cultured SKBR‑3 and BT474 cells in the presence of unstimulated T lymphocytes. HER2/CD3 BsAb efficiently inhibited the growth of breast cancer tissue by activating and inducing the proliferation of tumor tissue infiltrating lymphocytes. Therefore, HER2/CD3 BsAb is a potent tool which may be a suitable candidate for the treatment of breast cancer.


Effect of ginsenoside Rh2 on the migratory ability of HepG2 liver carcinoma cells: recruiting histone deacetylase and inhibiting activator protein 1 transcription factors.

  • Qingqiang Shi‎ et al.
  • Molecular medicine reports‎
  • 2014‎

In previous experiments, ginsenoside Rh2 induced apoptosis and cell cycle arrest, which indicates a potential role for ginsenoside Rh2 in anticancer treatment. The effect of ginsenoside Rh2 on cancer is marked and ginsenoside Rh2 has been shown to inhibit pancreatic tumor migratory ability. In the present study, Transwell chambers were used in order to investigate whether ginsenoside Rh2 inhibits the migratory ability of HepG2 liver carcinoma cells. Furthermore, to analyze activator protein 1 (AP-1) transcription factor expression following Rh2 treatment, ten plasmids encoding Renilla luciferase coupled to the transcription factors were transiently transfected into the HepG2 cells and luciferase was detected by the Luciferase Reporter Assay system reagent. The results indicated that ginsenoside Rh2 inhibited HepG2 cell migratory ability. The expression levels of AP-1 transcription factors were increased in HepG2 cells following induction by phorbol 12-myristate 13-acetate, but ginsenoside Rh2 suppressed this induced AP‑1 expression. AP-1 transcription factors recruit histone deacetylase (HDAC)4 and affect its transcription, thus, the expression levels of HDAC4 were also analyzed, and these were found to be increased in the Rh2 treatment group. Matrix metalloproteinase 3 (MMP3), a gene downstream of AP-1, was then investigated, and the treatment group expressed reduced levels of MMP3 gene and protein. Therefore, the inhibitory effect of ginsenoside Rh2 on the migratory ability of HepG2 may be presumed to occur by the recruitment of HDAC and the resulting inhibition of AP‑1 transcription factors, in order to reduce the expression levels of MMP3 gene and protein.


Sox2 inhibits Wnt-β-catenin signaling and metastatic potency of cisplatin-resistant lung adenocarcinoma cells.

  • Jinxi He‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Lung cancer remains one of the most common cancer-associated mortalities worldwide, and platinum-based doublet chemotherapies are recommended as the first‑line treatment for advanced non‑small cell lung cancer (NSCLC). However, the frequent development of multidrug resistance, to cisplatin regimens in particular, is a major cause of chemotherapy failure in patients with aggressive NSCLC. Wnt/β‑catenin signaling and sex‑determining region Y box 2 (Sox2) have been implicated in the development and progression and resistance to epidermal growth factor receptor‑targeting therapy in lung cancer. The present study aimed to explore the effects of Wnt/β‑catenin and Sox2 signaling on the chemoresistance of cisplatin‑resistant lung cancer cells by assessing the effects of Sox2 on Wnt/β‑catenin signaling activity, cell migration, invasion and clonogenicity, and susceptibility to cisplatin in lung adenocarcinoma A549 cells and cisplatin-resistant A549/DDP cells. The results demonstrated that an enforced expression of Sox2 led to inhibition of Wnt/β-catenin signaling activity, potentially by upregulating glycogen synthase kinase 3 β in A549 and A549/DDP cells. An overexpression of Sox2 promoted cell migration and invasion, in addition to enhancing the clonogenic capacity in A549 cells. Notably, knockdown Sox2 using short hairpin RNA led to an enhanced susceptibility of A549 and A549/DDP cells to cisplatin, along with increased cell apoptosis. The present study thus suggests that Sox2 may be an important regulator in development of chemoresistance of lung cancer cells and may be a novel therapeutic target for treatment chemoresistant lung cancer.


Histopathology of melanosis coli and determination of its associated genes by comparative analysis of expression microarrays.

  • Xiao-Αn Li‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Melanosis coli (MC) refers to the condition characterized by abnormal brown or black pigmentation deposits on the colonic mucosa. However, the histopathological findings and genes associated with the pathogenesis of melanosis coli remain to be fully elucidated. The present study aimed to examine the histopathological features and differentially expressed genes of MC. This involved performing hematoxylin and eosin staining, specific staining and immunohistochemistry on tissues sections, which were isolated from patients diagnosed with MC. DNA expression microarray analysis, western blotting and immunofluorescence assays were performed to analyze the differentially expressed genes of melanosis coli. The results demonstrated that the pigment deposits in MC consisted of lipofuscin. A TUNEL assay revealed that a substantial number of apoptotic cells were present within the macrophages and superficial lamina propria of the colonic epithelium. Expression microarray analysis revealed that the significantly downregulated genes were CYP3A4, CYP3A7, UGT2B11 and UGT2B15 in melanosis coli. Western blotting and immunofluorescence assays indicated that the expression of CYP3A4 in the normal tissue was higher than in the MC tissue. The results of the present study provided a comprehensive description of the histopathological characteristics and pathogenesis of MC and for the first time, to the best of our knowledge, demonstrated that the cytochrome P450‑associated genes were significantly downregulated in melanosis coli. This novel information can be used to assist in further investigations of melanosis coli.


Ethyl acetate extract of Hypericum japonicum induces apoptosis via the mitochondria-dependent pathway in vivo and in vitro.

  • Qunchuan Zhuang‎ et al.
  • Molecular medicine reports‎
  • 2015‎

The widely-used Chinese medicinal herb Hypericum japonicum, also known as Hypericum japonicum Thunb or Tianjihuang, displays potent anti‑carcinogenic effects against liver cancer. However, the molecular mechanism underlying the therapeutic effects of Hypericum japonicum remains to be elucidated. The present study investigated the in vivo efficacy of ethyl acetate extract of Hypericum japonicum (EAEHJ) against tumor growth in an H22 cell‑bearing liver cancer mouse model. Treatment with EAEHJ significantly reduced tumor weight, but had no effect on murine body weight. The results of the present study also showed that EAEHJ induced H22 cell apoptosis in vivo. In addition, the anti‑carcinogenic effects of EAEHJ were investigated in vitro. The results of the present study demonstrate that both phospholipid asymmetry in the plasma membrane and mitochondrial membrane potential were deregulated in HepG2 human hepatoma cells, following treatment with EAEHJ. Treatment with EAEHJ also increased the ratio of pro‑apoptotic B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax) to anti‑apoptotic Bcl‑2, and activated the caspase‑9 signaling pathway. These results suggest that EAEHJ is able to trigger the apoptosis of liver cancer cells via the mitochondria-dependent pathway.


Inhibition of mammalian target of rapamycin complex 1 signaling by n-3 polyunsaturated fatty acids promotes locomotor recovery after spinal cord injury.

  • Jiping Nie‎ et al.
  • Molecular medicine reports‎
  • 2018‎

The present study aimed to explore the effects of n‑3 polyunsaturated fatty acids (PUFAs) on autophagy and their potential for promoting locomotor recovery after spinal cord injury (SCI). Primary neurons were isolated and cultured. Sprague‑Dawley rats were randomly divided into three groups and fed diets with different amounts of n‑3 PUFAs. A model of spinal cord contusion was created at the T10 spinal segment and the composition of PUFAs was analyzed using gas chromatography. Spinal repair and motor function were evaluated postoperatively. Assessment of the effects of n‑3 PUFAs on autophagy and mammalian target of rapamycin complex 1 (mTORC1) was performed using immunofluorescence staining and western blotting. In vitro, n‑3 PUFAs inhibited mTORC1 and enhanced autophagy. The n‑3 PUFA levels and the ratio of n‑3 PUFA to n‑6 PUFA in the spinal cord and serum of rats fed a high‑n‑3 PUFA diet were higher before and after operation (P<0.05). Additionally, rats in the high‑n‑3 PUFA group showed improved motor function recovery, spinal cord repair‑related protein expression level (MBP, Galc and GFAP). Expression levels if these protiens in the high‑n‑3 PUFA diet group expressed the highest levels, followed by the low‑n‑3 PUFA diet group and finally the control group (P<0.05). high‑n‑3 PUFA diet promoted autophagy ability and inhibited activity of the mTORC1 signaling pathway compared with the low‑n‑3 PUFA diet group or the control group (P<0.05). These results suggest that exogenous dietary n‑3 PUFAs can inhibit mTORC1 signaling and enhance autophagy, promoting functional recovery of rats with SCI.


7ND protein exerts inhibitory effects on both osteoclast differentiation in vitro and lipopolysaccharide‑induced bone erosion in vivo.

  • Weilin Long‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Excessive numbers of osteoclasts are responsible for inflammation‑induced osteolysis. Identification of osteoclast‑targeting agents may facilitate the development of a novel therapeutic approach for the treatment of pathological bone loss. Seven‑amino acid truncated (7ND) protein, a mutant form of monocyte chemoattractant protein‑1 (MCP‑1), functions as a competitive inhibitor of MCP‑1. However, the effects of 7ND protein on osteoclast differentiation remain unknown. Therefore, in the present study, the effects of 7ND protein on osteoclast differentiation induced by tumour necrosis factor superfamily member 11 were investigated. In the present study, 7ND protein inhibited the osteoclast differentiation of peripheral blood mononuclear cells without influencing cell proliferation. Furthermore, to evaluate the effects of 7ND protein in vivo, a lipopolysaccharide (LPS)‑induced calvarial bone erosion animal model was established. The 7ND protein remarkably attenuated LPS‑induced bone resorption, as assessed by micro‑computed tomography and histological analysis. Taken together, the present results suggested the feasibility of local delivery of 7ND protein to mitigate osteoclast differentiation and LPS‑induced osteolysis, which may represent a potential approach to treat inflammatory bone destruction.


Protective effects of astragaloside IV against ovalbumin-induced allergic rhinitis are mediated by T-box protein expressed in T cells/GATA-3 and forkhead box protein 3/retinoic acid-related orphan nuclear receptor γt.

  • Keqiong Li‎ et al.
  • Molecular medicine reports‎
  • 2017‎

3-O-β-D-xylopyranosyl-6-O-β-D-glucopyranosyl-cycloastragenol, or Astragaloside IV (AST), is one of the major active ingredients isolated from Astragalus membranaceous with distinct pharmacological effects, and possesses anti-inflammatory, immunoregulatory and antifibrotic properties. However, the effects of AST on allergic rhinitis remain to be elucidated. The present study aimed to examine the effects of AST on immunoglobulin (Ig) E‑mediated allergic reactions in vivo, by using a mouse model of allergic rhinitis established via repetitive sensitization and intranasal challenge with ovalbumin (OVA). Intragastric administration of AST (25 mg/kg or 50 mg/kg) or dexamethasone (DEX; 3 mg/kg) significantly alleviated the inflammatory response, nasal symptoms and mucosa remodeling, and decreased the serum levels of OVA‑specific IgE in allergic mice. Furthermore, treatment with AST or DEX significantly suppressed the mRNA and protein expression levels of the transcription factor GATA‑3 and retinoic acid receptor‑related orphan nuclear receptor (ROR)γt in tissue samples isolated from the spleen and nasal mucosa of mice with allergic rhinitis. Conversely, mRNA and protein expression levels of T‑box protein expressed in T cells (T‑bet) and forkhead box protein 3 (Foxp3) were upregulated in the spleen and nasal mucosa of mice with allergic rhinitis following treatment with AST or DEX, and spleen protein levels of signal transducer and activator of transcription 3 followed a similar trend. In addition, treatment with AST was associated with fewer adverse events compared with treatment with DEX. The present results suggested that treatment with AST may attenuate OVA‑induced allergic rhinitis via regulating the expression of the transcription factors GATA‑3, RORγt, T‑bet and Foxp3, which commit T helper cells to the Th1 phenotype. Therefore, AST may represent an alternative therapeutic approach for the treatment of patients with allergic rhinitis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: