Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,282 papers

Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice.

  • Lei Chen‎ et al.
  • Oncotarget‎
  • 2016‎

Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic β-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-α, IL-1β and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects.


Chronic stress and excessive glucocorticoid exposure both lead to altered Neuregulin-1/ErbB signaling in rat myocardium.

  • Ruili Dang‎ et al.
  • Steroids‎
  • 2016‎

Exposure to chronic stress or excess glucocorticoids is associated with the development of depression and heart disease, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in cardiac function, much is still unknown concerning the biological link between NRG1/ErbB pathway and the stress-induced comorbidity of depression and cardiac dysfunction. Therefore, we examined the protein expression of NRG1 and ErbB receptors in the myocardium of rats following chronic unpredictable mild stress (CUMS) or rats treated with two different doses (0.2 and 2mg/kg/day, respectively) of dexamethasone (Dex). The stressed rats showed elevated expression of NRG1 and phosphorylated ErbB4 (pErbB4) in the myocardium, whereas ErbB2 and pErbB2 were inhibited. The lower dose of Dex enhanced myocardial NRG1/ErbB signaling, but as the dose is increased, while ErbB4 remained activated, the expression of ErbB2 and pErbB2 became compromised. Both CUMS and 2mg/kg of Dex suppressed the downstream Akt and ERK phosphorylation. Although the lower dose of Dex increased myocardial antiapoptotic Bcl-xl expression, a significant decrease of Bcl-xl expression was found in rats treated with the higher dose. Meanwhile, both CUMS and two different doses of Dex induced proapoptotic Bax level. Combined, our data firstly showed (mal)adaptive responses of NRG1/ErbB system in the stressed heart, indicating the potential involvement of NRG1/ErbB pathway in the stress-induced cardiac dysfunction.


Core 2 mucin-type O-glycan inhibits EPEC or EHEC O157:H7 invasion into HT-29 epithelial cells.

  • Jun Ye‎ et al.
  • Gut pathogens‎
  • 2015‎

How host cell glycosylation affects EPEC or EHEC O157:H7 invasion is unclear. This study investigated whether and how O-glycans were involved in EPEC or EHEC O157:H7 invasion into HT-29 cells.


Structure-Based Design of Head-Only Fusion Glycoprotein Immunogens for Respiratory Syncytial Virus.

  • Jeffrey C Boyington‎ et al.
  • PloS one‎
  • 2016‎

Respiratory syncytial virus (RSV) is a significant cause of severe respiratory illness worldwide, particularly in infants, young children, and the elderly. Although no licensed vaccine is currently available, an engineered version of the metastable RSV fusion (F) surface glycoprotein-stabilized in the pre-fusion (pre-F) conformation by "DS-Cav1" mutations-elicits high titer RSV-neutralizing responses. Moreover, pre-F-specific antibodies, often against the neutralization-sensitive antigenic site Ø in the membrane-distal head region of trimeric F glycoprotein, comprise a substantial portion of the human response to natural RSV infection. To focus the vaccine-elicited response to antigenic site Ø, we designed a series of RSV F immunogens that comprised the membrane-distal head of the F glycoprotein in its pre-F conformation. These "head-only" immunogens formed monomers, dimers, and trimers. Antigenic analysis revealed that a majority of the 70 engineered head-only immunogens displayed reactivity to site Ø-targeting antibodies, which was similar to that of the parent RSV F DS-Cav1 trimers, often with increased thermostability. We evaluated four of these head-only immunogens in detail, probing their recognition by antibodies, their physical stability, structure, and immunogenicity. When tested in naïve mice, a head-only trimer, half the size of the parent RSV F trimer, induced RSV titers, which were statistically comparable to those induced by DS-Cav1. When used to boost DS-Cav1-primed mice, two head-only RSV F immunogens, a dimer and a trimer, boosted RSV-neutralizing titers to levels that were comparable to those boosted by DS-Cav1, although with higher site Ø-directed responses. Our results provide proof-of-concept for the ability of the smaller head-only RSV F immunogens to focus the vaccine-elicited response to antigenic site Ø. Decent primary immunogenicity, enhanced physical stability, potential ease of manufacture, and potent immunogenicity upon boosting suggest these head-only RSV F immunogens, engineered to retain the pre-fusion conformation, may have advantages as candidate RSV vaccines.


Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells.

  • Lei Chen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2016‎

Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are playing critical roles in neurogenesis, yet the underlying molecular mechanisms remain largely elusive. Neurite outgrowth is an early step in neuronal differentiation and regeneration. Using in vitro differentiation of neuroblastoma-derived Neuro-2a (N2a) cell as a model, we performed expression profiling to identify lncRNAs putatively relevant for neurite outgrowth. We identified that Metastasis-associated lung adenocarcinoma transcript 1 (Malat1) was one of the most significantly up-regulated lncRNAs during N2a cell differentiation. Malat1 knockdown resulted in defects in neurite outgrowth as well as enhanced cell death. To pinpoint signalling pathways perturbed by Malat1 depletion, we then performed a reporter-based screening to examine the activities of 50 signalling pathways in Malat1 knockdown cells. We found that Malat1 knockdown resulted in conspicuous inhibition of Mitogen-Activated Protein Kinase (MAPK) signaling pathway as well as abnormal activation of Peroxisome proliferator-activated receptor (PPAR) and P53 signalling pathway. Inhibition of ERK/MAPK pathway with PD98059 potently blocked N2a cell neurite outgrowth, whereas phorbol 12-myristate 13-acetate-induced ERK activation rescued defects in neurite outgrowth and cell death induced by Malat1 depletion. Together, our results established a critical role of Malat1 in the early step of neuronal differentiation through activating ERK/MAPK signalling pathway.


Naringenin Ameliorated Kidney Injury through Let-7a/TGFBR1 Signaling in Diabetic Nephropathy.

  • Ning Yan‎ et al.
  • Journal of diabetes research‎
  • 2016‎

Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus (DM). However, the exact mechanism is not clearly understood. In this study, our results showed that 24 h urinary protein, kidney index, and glomerular area were decreased, while creatinine clearance ratio was increased in DN rats when the rats were treated with NAR 50 mg/d for 6 weeks. Mesangial cell (MMCs) proliferation was inhibited in the NAR group by 3,(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and the cell cycle analysis showed that cells stayed in G2 phase in NAR group. And NAR treatment attenuated the deposition of ECM in DN rats and MMCs. Moreover, our data showed that let-7a was downexpressed in both DN rats and MMCs under high glucose condition. Surprisingly, NAR affected the expressions of Col4 and FN through upregulating let-7a in MMCs. In addition, we found that let-7a negatively regulated the expression of transforming growth factor-β1 receptor 1 (TGFBR1), and TGFBR1 was required for the let-7a-mediated downregulation of TGF-β1/smad signaling. Interestingly, NAR inhibited TGF-β1/smads signaling activation by upregulating let-7a. Therefore, our findings indicated that NAR ameliorated kidney injury by regulating let-7a/TGFBR1 signaling.


Comparison of Transcriptional Heterogeneity of Eight Genes between Batch Desulfovibrio vulgaris Biofilm and Planktonic Culture at a Single-Cell Level.

  • Zhenhua Qi‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Sulfate-reducing bacteria (SRB) biofilm formed on metal surfaces can change the physicochemical properties of metals and cause metal corrosion. To enhance understanding of differential gene expression in Desulfovibrio vulgaris under planktonic and biofilm growth modes, a single-cell based RT-qPCR approach was applied to determine gene expression levels of 8 selected target genes in four sets of the 31 individual cells isolated from each growth condition (i.e., biofilm formed on a mild steel (SS) and planktonic cultures, exponential and stationary phases). The results showed obvious gene-expression heterogeneity for the target genes among D. vulgaris single cells of both biofilm and planktonic cultures. In addition, an increased gene-expression heterogeneity in the D. vulgaris biofilm when compared with the planktonic culture was also observed for seven out of eight selected genes at exponential phase, and six out of eight selected genes at stationary phase, respectively, which may be contributing to the increased complexity in terms of structures and morphology in the biofilm. Moreover, the results showed up-regulation of DVU0281 gene encoding exopolysaccharide biosynthesis protein, and down-regulation of genes involved in energy metabolism (i.e., DVU0434 and DVU0588), stress responses (i.e., DVU2410) and response regulator (i.e., DVU3062) in the D. vulgaris biofilm cells. Finally, the gene (DVU2571) involved in iron transportation was found down-regulated, and two genes (DVU1340 and DVU1397) involved in ferric uptake repressor and iron storage were up-regulated in D. vulgaris biofilm, suggesting their possible roles in maintaining normal metabolism of the D. vulgaris biofilm under environments of high concentration of iron. This study showed that the single-cell based analysis could be a useful approach in deciphering metabolism of microbial biofilms.


LIM domain only 2 over-expression in prostate stromal cells facilitates prostate cancer progression through paracrine of Interleukin-11.

  • Chen-Yi Jiang‎ et al.
  • Oncotarget‎
  • 2016‎

Mechanisms of stromal-epithelial crosstalk are essential for Prostate cancer (PCa) tumorigenesis and progression. Peripheral zone of the prostate gland possesses a stronger inclination for PCa than transition zone. We previously found a variety of genes that differently expressed among different prostate stromal cells, including LIM domain only 2 (LMO2) which highly expressed in peripheral zone derived stromal cells (PZSCs) and PCa associated fibroblasts (CAFs) compared to transition zone derived stromal cells (TZSCs). Studies on its role in tumors have highlighted LMO2 as an oncogene. Herein, we aim to study the potential mechanisms of stromal LMO2 in promoting PCa progression. The in vitro cells co-culture and in vivo cells recombination revealed that LMO2 over-expressed prostate stromal cells could promote the proliferation and invasiveness of either prostate epithelial or cancer cells. Further protein array screening confirmed that stromal LMO2 stimulated the secretion of Interleukin-11 (IL-11), which could promote proliferation and invasiveness of PCa cells via IL-11 receptor α (IL11Rα) - STAT3 signaling. Moreover, stromal LMO2 over-expression could suppress miR-204-5p which was proven to be a negative regulator of IL-11 expression. Taken together, results of our study demonstrate that prostate stromal LMO2 is capable of stimulating IL-11 secretion and by which activates IL11Rα - STAT3 signaling in PCa cells and then facilitates PCa progression. These results may make stromal LMO2 responsible for zonal characteristic of PCa and as a target for PCa microenvironment-targeted therapy.


Simvastatin enhances NMDA receptor GluN2B expression and phosphorylation of GluN2B and GluN2A through increased histone acetylation and Src signaling in hippocampal CA1 neurons.

  • Tingting Chen‎ et al.
  • Neuropharmacology‎
  • 2016‎

Simvastatin (SV) can improve cognitive deficits in Alzheimer's disease patients and mice. Herein, we report that the administration of SV (20 mg/kg) for 5 days in mice (SV-mice) or the treatment of slices with SV (10 μM) for 4 h (SV-slices) could increase the density of NMDA-evoked inward currents (INMDA) in hippocampal CA1 pyramidal cells, which were blocked by farnesol (FOH) that converts farnesyl pyrophosphate (FPP), but not geranylgeraniol (GGOH) that increases geranylgeranylpyrophosphate (GGPP). Sensitivity of INMDA to ifenprodil in SV-mice or SV-slices was significantly increased. The levels of hippocampal GluN2B and GluN2A or Src phosphorylation in SV-mice or SV-slices were higher than controls, which were sensitive to FOH. The Src inhibitor PP2 could inhibit the SV-enhanced phosphorylation of GluN2B and GluN2A and SV-augmented INMDA, but PI3K inhibitor LY294002 did not. The levels of GluN2B mRNA and protein were elevated in SV-mice, which was abolished by FOH, but not by GGOH or PP2. Furthermore, the histone H3K9 and H3K27 acetylation of GluN2B promoter was increased in SV-mice, which was suppressed by FOH rather than GGOH or PP2. In control mice and slices, the reduction of FPP by farnesyl transferase inhibitor could increase the levels of GluN2B expression, the histone H3K9 and H3K27 acetylation and enhance the phosphorylation of GluN2B, GluN2A and Src. The findings indicate that the administration of SV can enhance GluN2B expression and GluN2B and GluN2A phosphorylation leading to augmentation of NMDAR activity through reducing FPP to increase histone acetylation of GluN2B and Src signaling.


Dynamic gene expression profiles during postnatal development of porcine subcutaneous adipose.

  • Jie Zhang‎ et al.
  • PeerJ‎
  • 2016‎

A better understanding of the control of lipogenesis is of critical importance for both human and animal physiology. This requires a better knowledge of the changes of gene expression during the process of adipose tissue development. Thus, the objective of the current study was to determine the effects of development on subcutaneous adipose tissue gene expression in growing and adult pigs. Here, we present a comprehensive investigation of mRNA transcriptomes in porcine subcutaneous adipose tissue across four developmental stages using digital gene expression profiling. We identified 3,274 differential expressed genes associated with oxidative stress, immune processes, apoptosis, energy metabolism, insulin stimulus, cell cycle, angiogenesis and translation. A set of universally abundant genes (ATP8, COX2, COX3, ND1, ND2, SCD and TUBA1B) was found across all four developmental stages. This set of genes may play important roles in lipogenesis and development. We also identified development-related gene expression patterns that are linked to the different adipose phenotypes. We showed that genes enriched in significantly up-regulated profiles were associated with phosphorylation and angiogenesis. In contrast, genes enriched in significantly down-regulated profiles were related to cell cycle and cytoskeleton organization, suggesting an important role for these biological processes in adipose growth and development. These results provide a resource for studying adipose development and promote the pig as a model organism for researching the development of human obesity, as well as being used in the pig industry.


Sulfatase 1 (hSulf-1) reverses basic fibroblast growth factor-stimulated signaling and inhibits growth of hepatocellular carcinoma in animal model.

  • Gaoya Xu‎ et al.
  • Oncotarget‎
  • 2014‎

The human sulfatase 1 (hSulf-1) gene encodes an endosulfatase that functions to inhibit the heparin-binding growth factor signaling, including the basic fibroblast growth factor (bFGF)-mediated pathway, by desulfating the cell surface heparan sulfate proteoglycans (HSPGs). bFGF could stimulate cell cycle progression and inhibit cell apoptosis, this biological effect can be reversed by hSulf-1. However, molecular mechanisms have not been fully reported. In the current study, by reactivation of hSulf-1 expression and function in the hSulf-1-negative hepatocellular carcinoma (HCC) cell lines and HCC xenograft tumors, we found that hSulf-1 blocked the bFGF effect on the promotion of cell cycle and inhibition of apoptosis. The bFGF-stimulated activation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) pathways was suppressed by hSulf-1, which led to a decreased expression of the target genes Cyclin D1 and Survivin, then finally induced cell cycle arrest and apoptosis in HCC cells. Our data suggested that hSulf-1 may be a suitable target for cancer therapy.


Computational analysis of HIV-1 resistance based on gene expression profiles and the virus-host interaction network.

  • Tao Huang‎ et al.
  • PloS one‎
  • 2011‎

A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS) therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR) and Incremental Feature Selection (IFS) methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection.


Low BRMS1 expression promotes nasopharyngeal carcinoma metastasis in vitro and in vivo and is associated with poor patient survival.

  • Rui-Xue Cui‎ et al.
  • BMC cancer‎
  • 2012‎

Breast cancer metastasis suppressor 1 (BRMS1) is a metastasis suppressor gene. This study aimed to investigate the impact of BRMS1 on metastasis in nasopharyngeal carcinoma (NPC) and to evaluate the prognostic significance of BRMS1 in NPC patients.


Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening.

  • Wei Shan‎ et al.
  • Journal of experimental botany‎
  • 2012‎

The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1-MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1-MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components.


Assessing the risk that Phytophthora melonis can develop a point mutation (V1109L) in CesA3 conferring resistance to carboxylic acid amide fungicides.

  • Lei Chen‎ et al.
  • PloS one‎
  • 2012‎

The risk that the plant pathogen Phytophthora melonis develops resistance to carboxylic acid amide (CAA) fungicides was determined by measuring baseline sensitivities of field isolates, generating resistant mutants, and measuring the fitness of the resistant mutants. The baseline sensitivities of 80 isolates to flumorph, dimethomorph and iprovalicarb were described by unimodal curves, with mean EC(50) values of 0.986 (±0.245), 0.284 (±0.060) and 0.327 (±0.068) µg/ml, respectively. Seven isolates with different genetic background (as indicated by RAPD markers) were selected to generate CAA-resistance. Fifty-five resistant mutants were obtained from three out of seven isolates by spontaneous selection and UV-mutagenesis with frequencies of 1×10(-7) and 1×10(-6), respectively. CAA-resistance was stable for all mutants. The resistance factors of these mutants ranged from 7 to 601. The compound fitness index (CFI  =  mycelial growth × zoospore production × pathogenicity) was often lower for the CAA-resistant isolates than for wild-type isolates, suggesting that the risk of P. melonis developing resistance to CAA fungicides is low to moderate. Among the CAA-resistant isolates, a negative correlation between EC(50) values was found for iprovalicarb vs. flumorph and for iprovalicarb vs. dimethomorph. Comparison of the full-length cellulose synthase 3 (CesA3) between wild-type and CAA-resistant isolates revealed only one point mutation at codon position 1109: a valine residue (codon GTG in wild-type isolates) was converted to leucine (codon CTG in resistant mutants). This represents a novel point mutation with respect to mutations in CesA3 conferring resistance to CAA fungicides. Based on this mutation, an efficient allelic-specific PCR (AS-PCR) method was developed for rapid detection of CAA-resistance in P. melonis populations.


Tumor grafting induces changes of gut microbiota in athymic nude mice in the presence and absence of medicinal Gynostemma saponins.

  • Lei Chen‎ et al.
  • PloS one‎
  • 2015‎

Recent findings have revealed that gut microbiota plays a substantial role in modulating diseases such as autism, rheumatoid arthritis, allergies, and cancer that occur at sites distant to the gut. Athymic nude mice have been employed for tumorigenic research for decades; however, the relationships between the gut microbiome and host's response in drug treatment to the grafted tumors have not been explored. In this study, we analyzed the fecal microbiome of nonxenograft and xenograft nude mice treated with phytosaponins from a popular medicinal plant, Gynostemma pentaphyllum (Gp). Analysis of enterobacterial repetitive intergenic consensus (ERIC)-PCR data showed that the microbiota profile of xenograft mice departed from that of the nonxenograft mice. After ten days of treatment with Gp saponins (GpS), the microbiota of the treated mice was closer to the microbiota at Day 0 before the implantation of the tumor. Data obtained from 16S pyrosequencing of fecal samples reiterates the differences in microbiome between the nonxenograft and xenograft mice. GpS markedly increased the relative abundance of Clostridium cocleatum and Bacteroides acidifaciens, for which the beneficial effects on the host have been well documented. This study, for the first time, characterizes the properties of gut microbiome in nude mice responding to tumor implant and drug treatment. We also demonstrate that dietary saponins such as GpS can potentially regulate the gut microbial ecosystem by increasing the number of symbionts. Interestingly, this regulation of the gut ecosystem might, at least in part, be responsible for or contribute to the anticancer effect of GpS.


Oligonucleotide Probes for ND-FISH Analysis to Identify Rye and Wheat Chromosomes.

  • Shulan Fu‎ et al.
  • Scientific reports‎
  • 2015‎

Genomic in situ hybridization (GISH) has been widely used to detect rye (Secale cereale L.) chromosomes in wheat (Triticum aestivum L.) introgression lines. The routine procedure of GISH using genomic DNA of rye as a probe is time-consuming and labor-intensive because of the preparation and labeling of genomic DNA of rye and denaturing of chromosomes and probes. In this study, new oligonucleotide probes Oligo-1162, Oligo-pSc200 and Oligo-pSc250 were developed. The three new probes can be used for non-denaturing fluorescence in situ hybridization (ND-FISH) assays and replace genomic DNA of rye as a probe to discriminate rye chromosomes in wheat backgrounds. In addition, previously developed oligonucleotide probes Oligo-pSc119.2-1, Oligo-pSc119.2-2, Oligo-pTa535-1, Oligo-pTa535-2, Oligo-pTa71-2, Oligo-pAWRC.1 and Oligo-CCS1 can also be used for ND-FISH of wheat and rye. These probes have provided an easier, faster and more cost-effective method for the FISH analysis of wheat and hybrids derived from wheat × rye.


A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus.

  • Guillaume B E Stewart-Jones‎ et al.
  • PloS one‎
  • 2015‎

Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by "DS-Cav1" mutations and by an appended C-terminal trimerization motif or "foldon" from T4-bacteriophage fibritin. Here we investigate the creation of a cysteine zipper to allow for the removal of the phage foldon, while maintaining the immunogenicity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide "rings", with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cysteine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen.


Swertianlarin, an Herbal Agent Derived from Swertia mussotii Franch, Attenuates Liver Injury, Inflammation, and Cholestasis in Common Bile Duct-Ligated Rats.

  • Liangjun Zhang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

Swertianlarin is an herbal agent abundantly distributed in Swertia mussotii Franch, a Chinese traditional herb used for treatment of jaundice. To study the therapeutic effect of swertianlarin on cholestasis, liver injury, serum proinflammatory cytokines, and bile salt concentrations were measured by comparing rats treated with swertianlarin 100 mg/kg/d or saline for 3, 7, or 14 days after bile duct ligation (BDL). Serum alanine aminotransferase (ATL) and aspartate aminotransferase (AST) levels were significantly decreased in BDL rats treated with swertianlarin for 14 days (P < 0.05). The reduced liver injury in BDL rats by swertianlarin treatment for 14 days was further confirmed by liver histopathology. Levels of serum tumor necrosis factor alpha (TNFα) were decreased by swertianlarin in BDL rats for 3 and 7 days (P < 0.05). Moreover, reductions in serum interleukins IL-1β and IL-6 levels were also observed in BDL rats treated with swertianlarin (P < 0.05). In addition, most of serum toxic bile salt concentrations (e.g., chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA)) in cholestatic rats were decreased by swertianlarin (P < 0.05). In conclusion, the data suggest that swertianlarin derived from Swertia mussotii Franch attenuates liver injury, inflammation, and cholestasis in bile duct-ligated rats.


MicroRNA-200 (miR-200) cluster regulation by achaete scute-like 2 (Ascl2): impact on the epithelial-mesenchymal transition in colon cancer cells.

  • Yin Tian‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Ascl2, a basic helix-loop-helix transcription factor, is a downstream target of WNT signaling that controls the fate of intestinal cryptic stem cells and colon cancer progenitor cells. However, its involvement in colon cancer and downstream molecular events is largely undefined; in particular, the mechanism by which Ascl2 regulates the plasticity of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) programs in colon cancer cells remains unknown. In this study, we systematically demonstrate that Ascl2 loss of function in colon cancer cells promotes MET by derepressing the expression of microRNA (miR)-200s (i.e. miR-200b, miR-200a, miR-429, miR-200c, and miR-141) and further activating their expression through a transcriptional mechanism that involves direct binding to the most proximal E-box (E-box2) in the miR-200b-a-429 promoter. Activation of miR-200s due to Ascl2 deficiency led to the inhibition of ZEB1/2 expression and the alteration of epithelial and mesenchymal features. Transfection of miR-200b, miR-200a, and miR-429 inhibitors into Ascl2-deficient colon cancer cells promoted the epithelial-mesenchymal transition in a reversible manner. Transfection of miR-200a or miR-429 inhibitors into Ascl2-deficient colon cancer cells increased cellular proliferation and migration. Ascl2 mRNA levels and the miR-200a, miR-200b, miR-200c, miR-141, or miR-429 levels in the colon cancerous samples were inversely correlated. These results provide the first evidence of a link between Ascl2 and miR-200s in the regulation of EMT-MET plasticity in colon cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: