Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 538 papers

Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis.

  • Li Huang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2016‎

Previous studies have investigated the sustained aberrantly activated Interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is crucial for pancreatic cancer growth and metastasis. Suppressor of cytokine signaling 3 (SOCS3), as a key negative feedback regulator of this signaling pathway, is usually down-regulated in various cancers. In the present study, we aim at exploring the biological function and the underlying molecular regulation mechanisms of SOCS3 in pancreatic cancer.


Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication.

  • Heng Dong‎ et al.
  • Scientific reports‎
  • 2015‎

Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.


Human cytomegalovirus IE1 protein alters the higher-order chromatin structure by targeting the acidic patch of the nucleosome.

  • Qianglin Fang‎ et al.
  • eLife‎
  • 2016‎

Human cytomegalovirus (hCMV) immediate early 1 (IE1) protein associates with condensed chromatin of the host cell during mitosis. We have determined the structure of the chromatin-tethering domain (CTD) of IE1 bound to the nucleosome core particle, and discovered that IE1-CTD specifically interacts with the H2A-H2B acidic patch and impairs the compaction of higher-order chromatin structure. Our results suggest that IE1 loosens up the folding of host chromatin during hCMV infections.


Simultaneous detection of four different neuraminidase types of avian influenza A H5 viruses by multiplex reverse transcription PCR using a GeXP analyser.

  • Meng Li‎ et al.
  • Influenza and other respiratory viruses‎
  • 2016‎

In order to develop a multiplex RT-PCR assay using the GeXP analyser for the simultaneous detection of four different NA serotypes of H5-subtype AIVs, effective to control and reduce H5 subtype of avian influenza outbreak.


Genomic survey sequencing for development and validation of single-locus SSR markers in peanut (Arachis hypogaea L.).

  • Xiaojing Zhou‎ et al.
  • BMC genomics‎
  • 2016‎

Single-locus markers have many advantages compared with multi-locus markers in genetic and breeding studies because their alleles can be assigned to particular genomic loci in diversity analyses. However, there is little research on single-locus SSR markers in peanut. Through the de novo assembly of DNA sequencing reads of A. hypogaea, we developed single-locus SSR markers in a genomic survey for better application in genetic and breeding studies of peanut.


HIC1 attenuates invasion and metastasis by inhibiting the IL-6/STAT3 signalling pathway in human pancreatic cancer.

  • Bin Hu‎ et al.
  • Cancer letters‎
  • 2016‎

Hypermethylated in cancer 1 (HIC1) is a tumour suppressor gene that is frequently deleted or epigenetically silenced in many human cancers. However, the molecular function of HIC1 in pancreatic cancer has not been fully elucidated, especially in cancer invasion and metastasis. We aimed to clarify the clinical relevance of HIC1 and human pancreatic cancer and the mechanism of its effect on invasion and metastasis .HIC1 was downregulated in pancreatic cancer patient cancer tissue and pancreatic cancer cell lines. A tissue microarray analysis demonstrated that negative HIC1 expression predicted advanced pathological stages and worse patient survival. In addition, HIC1 inhibited the invasion and metastasis of pancreatic cancer cells both in vitro and in vivo. Finally, HIC1 repressed the expression of STAT3 target genes, including c-Myc, VEGF, CyclinD1, MMP2 and MMP9, by binding and interacting with STAT3 to impede its DNA-binding ability but without affecting the protein levels of STAT3 and p-STAT3. Therefore, HIC1 appears to function as a STAT3 inhibitor and may be a promising target for cancer research and for the development of an optimal treatment approach for pancreatic cancer.


Interferon Regulatory Factor-1 Mediates Alveolar Macrophage Pyroptosis During LPS-Induced Acute Lung Injury in Mice.

  • Dongdong Wu‎ et al.
  • Shock (Augusta, Ga.)‎
  • 2016‎

Previously, we demonstrated that pyroptosis in alveolar macrophages (AMs) plays an essential role in lipopolysaccharide (LPS)-induced acute lung injury. However, the underlying mechanism remains largely unclear. Here, we show that the absence of interferon regulatory factor 1 (IRF-1) in genetic knock-out mice strongly abrogates pyroptosis in AMs and alleviates the LPS-induced lung injury and systemic inflammation. Our study demonstrates that IRF-1 contributes to caspase-1 activation and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain pyroptosome formation in AMs and leads to downstream inflammatory cytokine release, including that of IL-1β, IL-18, and HMGB1. The nuclear translocation of IRF-1 is linked to the presence of toll-like receptor 4 (TLR4). Our findings suggest that pyroptosis and the downstream inflammatory response in AMs induced by LPS is a process that is dependent on TLR4-mediated up-regulation of IRF-1. In summary, IRF-1 plays a key role in controlling caspase-1-dependent pyroptosis and inflammation.


Cigarette smoking hinders human periodontal ligament-derived stem cell proliferation, migration and differentiation potentials.

  • Tsz Kin Ng‎ et al.
  • Scientific reports‎
  • 2015‎

Cigarette smoking contributes to the development of destructive periodontal diseases and delays its healing process. Our previous study demonstrated that nicotine, a major constituent in the cigarette smoke, inhibits the regenerative potentials of human periodontal ligament-derived stem cells (PDLSC) through microRNA (miRNA) regulation. In this study, we hypothesized that the delayed healing in cigarette smokers is caused by the afflicted regenerative potential of smoker PDLSC. We cultured PDLSC from teeth extracted from smokers and non-smokers. In smoker PDLSC, we found significantly reduced proliferation rate and retarded migration capabilities. Moreover, alkaline phosphatase activity, calcium deposition and acidic polysaccharide staining were reduced after BMP2-induced differentiation. In contrast, more lipid deposition was observed in adipogenic-induced smoker PDLSC. Furthermore, two nicotine-related miRNAs, hsa-miR-1305 (22.08 folds, p = 0.040) and hsa-miR-18b (15.56 folds, p = 0.018), were significantly upregulated in smoker PDLSC, suggesting these miRNAs might play an important role in the deteriorative effects on stem cells by cigarette smoke. Results of this study provide further evidences that cigarette smoking affects the regenerative potentials of human adult stem cells.


Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres.

  • Zhouliang Yu‎ et al.
  • Developmental cell‎
  • 2015‎

The H3 histone variant CENP-A is an epigenetic marker critical for the centromere identity and function. However, the precise regulation of the spatiotemporal deposition and propagation of CENP-A at centromeres during the cell cycle is still poorly understood. Here, we show that CENP-A is phosphorylated at Ser68 during early mitosis by Cdk1. Our results demonstrate that phosphorylation of Ser68 eliminates the binding of CENP-A to the assembly factor HJURP, thus preventing the premature loading of CENP-A to the centromere prior to mitotic exit. Because Cdk1 activity is at its minimum at the mitotic exit, the ratio of Cdk1/PP1α activity changes in favor of Ser68 dephosphorylation, thus making CENP-A available for centromeric deposition by HJURP. Thus, we reveal that dynamic phosphorylation of CENP-A Ser68 orchestrates the spatiotemporal assembly of newly synthesized CENP-A at active centromeres during the cell cycle.


An Rb1-dependent amplification loop between Ets1 and Zeb1 is evident in thymocyte differentiation and invasive lung adenocarcinoma.

  • Kevin C Dean‎ et al.
  • BMC molecular biology‎
  • 2015‎

Ras pathway mutation leads to induction and Erk phosphorylation and activation of the Ets1 transcription factor. Ets1 in turn induces cyclin E and cyclin dependent kinase (cdk) 2 to drive cell cycle progression. Ets1 also induces expression of the epithelial-mesenchymal transition (EMT) transcription factor Zeb1, and thereby links Ras mutation to EMT, which is thought to drive tumor invasion. Ras pathway mutations are detected by the Rb1 tumor suppression pathway, and mutation or inactivation of the Rb1 pathway is required for EMT.


Platelet PI3Kγ Contributes to Carotid Intima-Media Thickening under Severely Reduced Flow Conditions.

  • Cuiping Wang‎ et al.
  • PloS one‎
  • 2015‎

Studies have begun to focus on the emerging function of platelets as immune and inflammatory cells that initiate and accelerate vascular inflammation. Phosphoinositide 3-kinase gamma (PI3Kγ) is critically involved in a number of inflammatory and autoimmune diseases. This study aims to investigate the contribution of platelet PI3Kγ to vascular remodeling under flow severely reduced conditions. Mouse partial left carotid artery ligation with adoptive transfer of activated, washed wild-type or PI3Kγ-/- platelets was used as the model. Intima-media area, leukocyte recruitment, and proinflammatory mediator expression were assessed. In vitro PI3Kγ-/- platelets were used to verify the effect of PI3Kγ on platelet activation, interaction with leukocytes, and endothelial cells. Mice injected with activated platelets showed a significant increase in intima-media thickening, recruitment of neutrophils (at 3 d) and macrophages (at 21 d), and intercellular adhesion molecule-1, vascular cell adhesion molecule-1, tumor necrosis factor alpha, and interleukin-6 expression (at 3 d) in the flow-reduced area. These effects were abrogated by platelet PI3Kγ deficiency. Circulating platelet-leukocyte aggregates were reduced in PI3Kγ-/- mice after partial ligation. In vivo data confirmed that PI3Kγ mediated Adenine di-Phosphate -induced platelet activation through the Akt and p38 MAP kinase signaling pathways. Moreover, platelet PI3Kγ deficiency reduced platelet-leukocyte aggregation and platelet-endothelial cell (EC) interaction. These findings indicate that platelet PI3Kγ contributes to platelet-mediated vascular inflammation and carotid intima-media thickening after flow severely reduced. Platelet PI3Kγ may be a new target in the treatment of vascular diseases.


PBRM1 suppresses bladder cancer by cyclin B1 induced cell cycle arrest.

  • Li Huang‎ et al.
  • Oncotarget‎
  • 2015‎

Growing evidence indicates that dys-regulation of PBRM1 contributes to tumorigenesis. However, little is known about the biological function of PBRM1 in the development or progression of bladder cancer. In this study, we aimed to elucidate the pathophysiological role of PBRM1 in bladder cancer. We assessed the expression of PBRM1 in 64 bladder cancer tissue samples with matching normal tissues. We explored the biological functions of PBRM1 both in vitro and in vivo. Mutational status of PBRM1 was analyzed. Effect of PBRM1 on cell cycle was evaluated. qRT-PCR and Western blot were carried out to evaluate the expression of cyclins affected by PBRM1. Our results showed that PBRM1 expression was significantly reduced in bladder cancer cells and tissues compared to their normal counterparts. The reduced expression of PBRM1 was associated with advanced tumor stage, low differentiation grade and worse patient outcome. Further functional analysis demonstrated that PBRM1 suppressed bladder cancer cell proliferation, migration, colony formation in vitro and tumorigenicity in vivo. Genetic alteration analysis showed no amino-acid sequence altering mutations. We found that PBRM1 could block the G2/M transition by repressing cyclin B1. Our data indicated that PBRM1 functions as a tumor suppressor in bladder cancer by repressing cyclin B1 expression.


Reducing progression of experimental lupus nephritis via inhibition of the B7/CD28 signaling pathway.

  • Li Huang‎ et al.
  • Molecular medicine reports‎
  • 2015‎

The aim of the present study was to evaluate the effects of the B7/cluster of differentiation (CD)28 signaling pathway on experimental lupus nephritis and examine the molecular mechanism involved by inhibiting the B7/CD28 signaling pathway. A lupus nephritis model in C57BL/6 J mice was induced via intraperitoneal injection of pristane. A recombinant B7‑1 short hairpin RNA (shRNA) lentivirus vector was constructed by synthesis and splicing. A neutralizing mouse anti‑human B7‑1 antibody termed 4E5 was also prepared. The mouse model of lupus nephritis was treated with B7‑1 shRNA and 4E5 via injection through the tail vein. The silencing effects of B7‑1 shRNA lentiviral infection on target molecules were evaluated using immunofluorescence and flow cytometry. The levels of protein in the urine were detected using Albustix test paper each month over 10 months. The concentration of interleukin (IL)‑4 and interferon‑γ in the serum was determined using an ELISA. The immune complex (IC) deposits in the kidney were analyzed using direct immunofluorescence. The results demonstrated that the C57BL/6 J mouse lupus nephritis model was successfully constructed with immune cells activated in the spleen of the mice, increases in the concentration of anti‑nuclear antibody (ANA) and anti‑double stranded DNA antibodies as well as positive IC formation. Following B7‑1 shRNA lentivirus or 4E5 treatment, CD11b+B7‑1+, CD11c+B7‑1+ and CD21+B7‑1+ cells in the spleen of the mice were significantly reduced. The concentration of ANA and IL‑4 in the serum was also decreased. The concentration of urine protein was reduced and it was at its lowest level in the 4E5 early intervention group. It was also revealed that the immunofluorescence intensity of the IC deposits was weak in the 4E5 early intervention group. In conclusion, inhibiting the B7‑1/CD28 signaling pathway is able to alleviate experimental lupus nephritis and provides an experimental basis for the therapeutic use of blocking the B7‑1/CD28 signaling pathway in human lupus nephritis and other autoimmune disorders.


The involvement of FAK-PI3K-AKT-Rac1 pathway in porcine reproductive and respiratory syndrome virus entry.

  • Bo Ni‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

CD163 and sialoadhesin had been reported as the two receptors for porcine reproductive and respiratory syndrome virus (PRRSV) infection. The signaling pathway activated by PRRSV entry was seldom reported. In our studies, we demonstrated that PRRSV entry triggers FAK, PI3K, AKT and Rac1 activation. The signaling pathway FAK-PI3K-AKT-Rac1 is essential for PRRSV entry. Blocking FAK by PF573228 attenuates the activation of PI3K, AKT, Rac1 and the cytoskeleton remodeling induced by virus entry. Inhibitors to FAK, PI3K, AKT and Rac1 can significantly inhibit the virus entry. In conclusion, our observations reveal that PRRSV triggers the activation of FAK-PI3K-AKT-Rac1 signaling pathway to facilitate its entry into cells.


DDX19 Inhibits Type I Interferon Production by Disrupting TBK1-IKKε-IRF3 Interactions and Promoting TBK1 and IKKε Degradation.

  • Kunli Zhang‎ et al.
  • Cell reports‎
  • 2019‎

DExD/H-box helicase members are key receptors for recognizing viral nucleic acids, and they regulate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated type I interferon (IFN) production. Here, we report that the DExD/H-box helicase family member DExD/H-box RNA helicase 19 (DDX19) is a negative regulator of type I IFN production. Ectopic expression of DDX19 suppressed poly(I:C) (polyinosinic-polycytidylic acid)- and Sendai-virus-induced type I IFN production, whereas knockdown of DDX19 expression enhanced type I IFN production. Mechanistically, DDX19 inhibited TANK-binds kinase 1 (TBK1)- and inhibitor-κb kinase ε (IKKε)-mediated phosphorylation of interferon regulatory factor 3 (IRF3) by disrupting the interaction between TBK1 or IKKε and IRF3. Additionally, DDX19 recruited Lamtor2 and then formed the TBK1-IKKε-Lamtor2-DDX19-IRF3 complex to suppress IFN production by promoting TBK1 and IKKε degradation. We generated Ddx19 knockout mice using transcription activator-like effector nucleases (TALENs) and found that Ddx19 deficiency in vivo augmented type I IFN production, resulting in suppression of encephalomyocarditis virus replication. These data show that DDX19 is an important negative regulator of RLR-mediated type I IFN production.


The regulation of oxidative phosphorylation pathway on Vibrio alginolyticus adhesion under adversities.

  • Li Huang‎ et al.
  • MicrobiologyOpen‎
  • 2019‎

Vibrio alginolyticus is one of the most important pathogens in mariculture and leading to heavy losses. After treatment with Cu2+ , Pb2+ , and low pH, the expression of oxidative phosphorylation pathway genes, including coxA, coxB, coxC, ccoN, ccoO, and ccoQ, was found commonly downregulated by RNA-seq as well as quantitative real-time PCR. RNAi significantly reduced the expression of coxA, coxB, coxC, ccoN, ccoO, and ccoQ in V. alginolyticus. Compared with the wild-type strain, the adhesion abilities of RNAi strains of V. alginolyticus were significantly impaired, as well as their cytochrome C oxidase activity. ccoQ appeared to be more important in the regulation of bacterial adhesion in these target genes, while ccoO was relatively weak in the regulation of the adhesion. Meanwhile, the changes of temperature, salinity, pH, and starvation affected coxA, coxB, coxC, ccoN, ccoO, and ccoQ expression remarkably. These findings indicated that: the oxidative phosphorylation pathway is a critical regulator of adhesion in V. alginolyticus; coxA, coxB, coxC, ccoN, ccoO, and ccoQ regulate the bacterial adhesion in response to environmental changes such as temperature, salinity, pH, and starvation.


Detoxification therapy of traditional Chinese medicine for genital tract high-risk human papillomavirus infection: A systematic review and meta-analysis.

  • Mei Luo‎ et al.
  • PloS one‎
  • 2019‎

Persistence of high-risk human papillomavirus (hr-HPV) infections is the most critical risk factor for cervical intraepithelial neoplasia (CIN) and cervical cancer (CC). Treatment of persistent oncogenic HPV-positive women after 12-24 months follow-up is still controversy. Detoxification therapy of Chinese medicine (DTCM) has been conducted recently. However, the conclusions are still unclear. We planned to conduct a systematic review and meta-analysis to explore DTCM in the treatment of persistent hr-HPV infections.


Comparative transcriptome analysis and ChIP-sequencing reveals stage-specific gene expression and regulation profiles associated with pollen wall formation in Brassica rapa.

  • Xiuping Shen‎ et al.
  • BMC genomics‎
  • 2019‎

Genic male sterility (GMS) line is an important approach to utilize heterosis in Brassica rapa, one of the most widely cultivated vegetable crops in Northeast Asia. However, the molecular genetic mechanisms of GMS remain to be largely unknown.


Stable QTLs for Plant Height on Chromosome A09 Identified From Two Mapping Populations in Peanut (Arachis hypogaea L.).

  • Jianwei Lv‎ et al.
  • Frontiers in plant science‎
  • 2018‎

The peanut (Arachis hypogaea L.) is an important grain legume extensively cultivated worldwide, supplying edible oil and protein for human consumption. As in many other crops, plant height is a crucial factor in determining peanut architecture traits and has a unique effect on resistance to lodging and efficiency of mechanized harvesting as well as yield. Currently, the genetic basis underlying plant height remains unclear in peanut, which have hampered marker-assisted selection in breeding. In this study, we conducted a quantitative trait locus (QTL) analysis for peanut plant height by using two recombinant inbred line (RIL) populations including "Yuanza 9102 × Xuzhou 68-4 (YX)" and "Xuhua 13 × Zhonghua 6 (XZ)". In the YX population, 38 QTLs including 10 major QTLs from 9 chromosomes were detected in 4 environments, and 8 consensus QTLs integrated by meta-analysis expressed stably across multiple environments. In the XZ population, 3 major QTLs and seven minor QTLs from 6 chromosomes were detected across 3 environments. Generally, most major QTLs from the two populations were located on pseudomolecule chromosome 9 of Arachis duranesis (A09), indicating there would be key genes on A09 controlling plant height. Further analysis revealed that qPHA09.1a from the XZ population and one consensus QTL, cqPHA09.d from the YX population were co-localized in a reliable 3.4 Mb physical interval on A09, which harbored 161 genes including transcription factors and enzymes related to signaling transduction and cell wall formation. The major and stable QTLs identified in this study may be useful for further gene cloning and identification of molecular markers applicable for breeding.


Genome-wide identification, phylogeny, evolution, and expression patterns of MtN3/saliva/SWEET genes and functional analysis of BcNS in Brassica rapa.

  • Liming Miao‎ et al.
  • BMC genomics‎
  • 2018‎

Members of the MtN3/saliva/SWEET gene family are present in various organisms and are highly conserved. Their precise biochemical functions remain unclear, especially in Chinese cabbage. Based on the whole genome sequence, this study aims to identify the MtN3/saliva/SWEETs family members in Chinese cabbage and to analyze their classification, gene structure, chromosome distribution, phylogenetic relationship, expression pattern, and biological functions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: