Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Common minor histocompatibility antigen discovery based upon patient clinical outcomes and genomic data.

  • Paul M Armistead‎ et al.
  • PloS one‎
  • 2011‎

Minor histocompatibility antigens (mHA) mediate much of the graft vs. leukemia (GvL) effect and graft vs. host disease (GvHD) in patients who undergo allogeneic stem cell transplantation (SCT). Therapeutic decision making and treatments based upon mHAs will require the evaluation of multiple candidate mHAs and the selection of those with the potential to have the greatest impact on clinical outcomes. We hypothesized that common, immunodominant mHAs, which are presented by HLA-A, B, and C molecules, can mediate clinically significant GvL and/or GvHD, and that these mHAs can be identified through association of genomic data with clinical outcomes.


The safety and efficacy of Sclerosing foam on treating venous leg ulcers: Protocol for systematic review and meta-analysis.

  • Weijing Fan‎ et al.
  • Medicine‎
  • 2020‎

Venous leg ulcers (VLUs) are common throughout the world, which seriously affects the patient's work and life. Relevant researches suggested that sclerosing foam (SF) has potential benefits for VLUs. However, there is no consistent conclusion. The purpose of our study is to assess whether SF is effective and safe for VLUs.


Quantitative Proteomics Reveals the Role of Lysine 2-Hydroxyisobutyrylation Pathway Mediated by Tip60.

  • Ning Wang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Lysine 2-hydroxyisobutyrylation (Khib) is a new type of posttranslational modifications (PTMs) extensively reported on eukaryotic cell histones. It is evolutionarily conserved and participates in diverse important biological processes, such as transcription and cell metabolism. Recently, it has been demonstrated that Khib can be regulated by p300 and Tip60. Although the specific Khib substrates mediated by p300 have been revealed, how Tip60 regulates diverse cellular processes through the Khib pathway and the different roles between Tip60 and p300 in regulating Khib remain largely unknown, which prevents us from understanding how this modification executes its biological functions. In this study, we report the first Khib proteome mediated by Tip60. In total, 3502 unique Khib sites from 1050 proteins were identified. Among them, 536 Khib sites from 406 proteins were present only in Tip60 overexpressing cells and 13 Khib sites increased more than 2-fold in response to Tip60 overexpression, indicating that Tip60 significantly affected global Khib. Notably, only 5 of the 549 Tip60-targeted Khib sites overlapped with the 149 known Khib sites targeted by p300, indicating the different Khib substrate preferences of Tip60 and p300. In addition, the Khib substrates regulated by Tip60 are deeply involved in processes such as nucleic acid metabolism and translation, and some are associated with Parkinson's and Prion diseases. In summary, our research reveals the Khib substrates targeted by Tip60, which elucidates the effect of Tip60 in regulating various cellular processes through the Khib pathway, and proposes novel views into the functional mechanism of Tip60.


Long noncoding RNA ACART knockdown decreases 3T3-L1 preadipocyte proliferation and differentiation.

  • Renyan Huang‎ et al.
  • Open life sciences‎
  • 2023‎

Obesity is a main risk factor for diabetes and cardiovascular disorders and is closely linked to preadipocyte differentiation or adipogenesis. Peroxisome proliferator-activated receptor γ (PPARγ) is an indispensable transcription factor in adipogenesis. A newly identified long noncoding RNA, Acart, exerts a protective effect against cardiomyocyte injury by transactivating PPARγ signaling. However, the function of Acart in preadipocyte differentiation is unclear. To investigate the function of Acart in adipogenesis, a well-established preadipocyte, the 3T3-L1 cell line, was induced to differentiate, and Acart level was assessed during differentiation using quantitative real-time PCR. The biological role of Acart in adipogenesis was analyzed by assessing lipid droplet accumulation, PPARγ and CCAAT/enhancer-binding protein α (C/EBPα) expression, and 3T3-L1 cell proliferation and apoptosis after Acart silencing. We found that Acart level was promptly increased during preadipocyte differentiation in vitro. Acart was also significantly upregulated in obese mouse-derived subcutaneous, perirenal, and epididymal fat tissues compared with nonobese mouse-derived adipose tissues. Functionally, Acart depletion inhibited preadipocyte differentiation, as evidenced by a significant decrease in lipid accumulation and PPARγ and C/EBPα expression levels. Acart silencing also inhibited 3T3-L1 cell proliferation, whereas Acart overexpression accelerated 3T3-L1 cell proliferation and decreased cell apoptosis. Taken together, the current results reveal a novel function of Acart in regulating preadipocyte proliferation and differentiation.


T helper 17 cells promote cytotoxic T cell activation in tumor immunity.

  • Natalia Martin-Orozco‎ et al.
  • Immunity‎
  • 2009‎

Although T helper 17 (Th17) cells have been found in tumor tissues, their function in cancer immunity is unclear. We found that interleukin-17A (IL-17A)-deficient mice were more susceptible to developing lung melanoma. Conversely, adoptive T cell therapy with tumor-specific Th17 cells prevented tumor development. Importantly, the Th17 cells retained their cytokine signature and exhibited stronger therapeutic efficacy than Th1 cells. Unexpectedly, therapy using Th17 cells elicited a remarkable activation of tumor-specific CD8(+) T cells, which were necessary for the antitumor effect. Th17 cells promoted dendritic cell recruitment into the tumor tissues and in draining lymph nodes increased CD8 alpha(+) dendritic cells containing tumor material. Moreover, Th17 cells promoted CCL20 chemokine production by tumor tissues, and tumor-bearing CCR6-deficient mice did not respond to Th17 cell therapy. Thus, Th17 cells elicited a protective inflammation that promotes the activation of tumor-specific CD8(+) T cells. These findings have important implications in antitumor immunotherapies.


Safety and efficacy of larval therapy on treating leg ulcers: a protocol for systematic review and meta-analysis.

  • Weijing Fan‎ et al.
  • BMJ open‎
  • 2020‎

Leg ulcers (LUs) not only seriously affect life and work of patients, but also bring huge economic burden to the society. As a potential underused biological debridement, larval therapy provides help for the treatment of LUs. The purpose of our research is to assess whether patients with LUs can benefit from larval therapy.


The impact of exercise training for chronic heart failure patients with cardiac resynchronization therapy: A systematic review and meta-analysis.

  • Ran Guo‎ et al.
  • Medicine‎
  • 2021‎

Systematically review the current published literature on the impact of exercise training (ET) in chronic heart failure (CHF) patients who were conducted cardiac resynchronization therapy (CRT).


Zizhu Ointment Accelerates Wound-Healing of Diabetic Ulcers through Promoting M2 Macrophage Polarization via Downregulating the Notch4 Signaling Pathway.

  • Renyan Huang‎ et al.
  • Computational intelligence and neuroscience‎
  • 2022‎

The long-term clinical practice shows that Zizhu ointment (ZZO) is an empirical formula for the treatment of diabetic ulcers (DUs). In this study, we investigated the underlying mechanism of ZZO in the treatment of DU mice.


Identifying and Validating GSTM5 as an Immunogenic Gene in Diabetic Foot Ulcer Using Bioinformatics and Machine Learning.

  • Hongshuo Shi‎ et al.
  • Journal of inflammation research‎
  • 2023‎

A diabetic foot ulcer (DFU) is a serious, long-term condition associated with a significant risk of disability and mortality. However, research on its biomarkers is still limited. This study utilizes bioinformatics and machine learning methods to identify immune-related biomarkers for DFU and validates them through external datasets and animal experiments.


The Effects of Nitrogen Addition on the Uptake and Allocation of Macro- and Micronutrients in Bothriochloa ischaemum on Loess Plateau in China.

  • Zemin Ai‎ et al.
  • Frontiers in plant science‎
  • 2017‎

The effects of nitrogen (N) addition on the macro- and micronutrient concentrations, storage, and allocation of Bothriochloa ischaemum (L.) Keng, a native forage plant on the Loess Plateau in China remain unclear. We studied the effects of N addition at 0 (CK), 2.5 (N1), 5.0 (N2), and 10.0 (N3) g N m-2 y-1. N addition significantly decreased the available copper (Cu), zinc (Zn), and total Cu concentration, but significantly increased the available iron concentration in the soil. Cu, manganese (Mn), and sodium (Na) concentrations in aboveground tissues and potassium (K), magnesium, and Zn concentrations in belowground tissues significantly increased with N addition. Calcium (Ca) concentrations in belowground tissues decreased significantly. The ratios of above- to belowground Ca, Cu, Zn, and Mn significantly increased with N addition. The maximum ratios appeared at N2 for Cu, Zn, and Mn. The aboveground, belowground, and total biomass storage of studied nutrients significantly changed with N addition, and most attained maximum values under N2 treatment. The storage ratios of above- to belowground Cu, Zn, Mn, and Na attained maximum values at N2. We conclude that N addition significantly, but differentially influence the macro- and micronutrient concentrations and storage in B. ischaemum. B. ischaemum allocated and accumulated increased macro- and micronutrients to its aboveground tissues and exhibited high total storage when the amount of N addition reached 5 g N m-2 y-1.


Quantitative Proteomics Explore the Potential Targets and Action Mechanisms of Hydroxychloroquine.

  • Jingxiang Zhao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Hydroxychloroquine (HCQ) is an autophagy inhibitor that has been used for the treatment of many diseases, such as malaria, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Despite the therapeutic advances in these diseases, the underlying mechanisms have not been well determined and hinder the rational use of this drug in the future. Here, we explored the possible mechanisms and identified the potential binding targets of HCQ by performing quantitative proteomics and thermal proteome profiling on MIA PaCa-2 cells. This study revealed that HCQ may exert its functions by targeting some autophagy-related proteins such as ribosyldihydronicotinamide dehydrogenase (NQO2) and transport protein Sec23A (SEC23A), or regulating the expression of galectin-8 (LGALS8), mitogen-activated protein kinase 8 (MAPK8), and so on. Furthermore, HCQ may prevent the progression of pancreatic cancer by regulating the expression of nesprin-2 (SYNE2), protein-S-isoprenylcysteine O-methyltransferase (ICMT), and cotranscriptional regulator FAM172A (FAM172A). Together, these findings not only identified potential binding targets for HCQ but also revealed the non-canonical mechanisms of HCQ that may contribute to pancreatic cancer treatment.


Study on the regulatory effect of Panax notoginseng saponins combined with bone mesenchymal stem cell transplantation on IRAK1/TRAF6-NF-κB pathway in patients with diabetic cutaneous ulcers.

  • Yuqing Du‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2023‎

Panax notoginseng saponins (PNSs) have been found as the major active ingredient of Panax notoginseng (Burkill) F.H.Chen (PN) leaves, which has the effect of reducing inflammatory response, facilitating fibroblast proliferation, as well as promoting angiogenesis. This study aimed to investigate the molecular basis of PNS combined with bone mesenchymal stem cells (BMSCs) for treating diabetic cutaneous ulcers (DCU) and its mechanism of action.


β-acetoxyisovaleryl alkannin (AAN-II) from Alkanna tinctoria promotes the healing of pressure-induced venous ulcers in a rabbit model through the activation of TGF-β/Smad3 signaling.

  • Xiao Yang‎ et al.
  • Cellular & molecular biology letters‎
  • 2021‎

Alkannin-based pharmaceutical formulations for improving wound healing have been on the market for several years. However, detailed molecular mechanisms of their action have yet to be elucidated. Here, we investigated the potential roles of AAN-II in improving the healing of pressure-induced venous ulcers using a rabbit model generated by combining deep vein thrombosis with a local skin defect/local skin defect. The extent of healing was evaluated using hematoxylin and eosin (HE) or vimentin staining. Rabbit skin fibroblasts were cultured for AAN-II treatment or TGFB1-sgRNA lentivirus transfection. ELISA was used to evaluate the levels of various cytokines, including IL-1β, IL-4, IL-6, TNF-α, VEGF, bFGF, TGF-β and PDGF. The protein levels of TGF-β sensors, including TGF-β, Smad7 and phosphor-Smad3, and total Smad3, were assayed via western blotting after TGF-β knockout or AAN-II treatment. The results show that, for this model, AAN-II facilitates ulcer healing by suppressing the development of inflammation and promoting fibroblast proliferation and secretion of proangiogenic factors. AAN-II enhances the activation of the TGF-β1-Smad3 signaling pathway during skin ulcer healing. In addition, the results demonstrate that AAN-II and TGF-β have synergistic effects on ulcer healing. Our findings indicate that AAN-II can promote healing of pressure-induced venous skin ulcers via activation of TGF-β-Smad3 signaling in fibroblast cells and provide evidence that could be used in the development of more effective treatments.


The mechanism effects of root exudate on microbial community of rhizosphere soil of tree, shrub, and grass in forest ecosystem under N deposition.

  • Hang Jing‎ et al.
  • ISME communications‎
  • 2023‎

Forests are composed of various plant species, and rhizosphere soil microbes are driven by root exudates. However, the interplay between root exudates, microbial communities in the rhizosphere soil of canopy trees, understory shrubs, grasses, and their responses to nitrogen (N) deposition remains unclear. Pinus tabulaeformis, Rosa xanthina, and Carex lancifolia were used to investigate root exudates, rhizosphere soil microbial communities, and their responses to N application in forest ecosystem. Root exudate abundances of P. tabulaeformis were significantly higher than that of R. xanthina and C. lancifolia, with carbohydrates dominating P. tabulaeformis and R. xanthina root exudates, fatty acids prevailing in C. lancifolia root exudates. Following N application, root exudate abundances of P. tabulaeformis and R. xanthina initially increased before decreasing, whereas those of C. lancifolia decreased. Microbial number of rhizosphere soil of C. lancifolia was higher than that of P. tabulaeformis and R. xanthina, but there was insignificant variation of rhizosphere soil microbial diversity among plant species. N application exerted promotional and inhibitory impacts on bacterial and fungal numbers, respectively, while bacterial and fungal diversities were increased by N application. Overall, N application had negative effects on root exudates of P. tabulaeformis, inhibiting rhizosphere soil microbial populations. N application suppressed rhizosphere soil microbial populations by increasing root exudates of R. xanthina. Conversely, N application elevated nutrient content in the rhizosphere soil of C. lancifolia, reducing root exudates and minimally promoting microbial populations. This study highlights the importance of understory vegetation in shaping soil microbial communities within forests under N deposition.


Discovery of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as potent RORγt inverse agonists.

  • Yonghui Wang‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2015‎

A novel series of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as RORγt inverse agonists was discovered. Binding mode analysis of a RORγt partial agonist (2c) revealed by co-crystal structure in RORγt LBD suggests that the inverse agonists do not directly interfere with the interaction between H12 and the RORγt LBD. Detailed SAR exploration led to identification of potent RORγt inverse agonists such as 3m with a pIC50 of 8.0. Selected compounds in the series showed reasonable activity in Th17 cell differentiation assay as well as low intrinsic clearance in mouse liver microsomes.


Anti-tumor effect of ribavirin in combination with interferon-α on renal cell carcinoma cell lines in vitro.

  • Lichen Teng‎ et al.
  • Cancer cell international‎
  • 2014‎

Ribavirin is an anti-viral drug; however, recent data suggest that it may also be effective in cancer therapy. This study investigated the effect of ribavirin alone or in combination with IFN-α on biological processes: proliferation, apoptosis, and migration of murine (Renca) and human renal carcinoma (RCC) cells (786-0) in vitro.


A new method to optimize root order classification based on the diameter interval of fine root.

  • Ying Liu‎ et al.
  • Scientific reports‎
  • 2018‎

Plant roots are a highly heterogeneous and hierarchical system. Although the root-order method is superior to the root diameter method for revealing differences in the morphology and physiology of fine roots, its complex partitioning limits its application. Whether root order can be determined by partitioning the main root based on its diameter remains uncertain. Four methods were employed for studying the morphological characteristics of seedling roots of two Pinus species in a natural and nitrogen-enriched environment. The intrinsic relationships among categories of roots by root order and diameter were systematically compared to explore the possibility of using the latter to describe root morphology. The normal transformation method proved superior to the other three in that the diameter intervals corresponded most closely (at least 68.3%) to the morphological characteristics. The applied methods clearly distinguished the results from the natural and nitrogen-rich environments. Considering both root diameter and order simplified the classification of fine roots, and improved the estimation of root lifespan and the data integrity of field collection, but failed to partition all roots into uniform diameter intervals.


Changes in Species Diversity Patterns and Spatial Heterogeneity during the Secondary Succession of Grassland Vegetation on the Loess Plateau, China.

  • Caili Sun‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Analyzing the dynamic patterns of species diversity and spatial heterogeneity of vegetation in grasslands during secondary succession could help with the maintenance and management of these ecosystems. Here, we evaluated the influence of secondary succession on grassland plant diversity and spatial heterogeneity of abandoned croplands on the Loess Plateau (China) during four phases of recovery: 1-5, 5-10, 10-20, and 20-30 years. The species composition and dominance of the grassland vegetation changed markedly during secondary succession and formed a clear successional series, with the species assemblage dominated by Artemisia capillaris→ Heteropappus altaicus→ A. sacrorum. The diversity pattern was one of low-high-low, with diversity peaking in the 10-20 year phase, thus corresponding to a hump-backed model in which maximum diversity occurring at the intermediate stages. A spatially aggregated pattern prevailed throughout the entire period of grassland recovery; this was likely linked to the dispersal properties of herbaceous plants and to high habitat heterogeneity. We conclude that natural succession was conducive to the successful recovery of native vegetation. From a management perspective, native pioneer tree species should be introduced about 20 years after abandoning croplands to accelerate the natural succession of grassland vegetation.


Response of soil dissolved organic matter to microplastic addition in Chinese loess soil.

  • Hongfei Liu‎ et al.
  • Chemosphere‎
  • 2017‎

Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but little information is available on the effects of plastic residues, especially microplastic, on soil DOM. We conducted a soil-incubation experiment in a climate-controlled chamber with three levels of microplastic added to loess soil collected from the Loess Plateau in China: 0% (control, CK), 7% (M1) and 28% (M2) (w/w). We analysed the soil contents of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), NH4+, NO3-, dissolved organic phosphorus (DOP), and PO43- and the activities of fluorescein diacetate hydrolase (FDAse) and phenol oxidase. The higher level of microplastic addition significantly increased the nutrient contents of the DOM solution. The lower level of addition had no significant effect on the DOM solution during the first seven days, but the rate of DOM decomposition decreased in M1 between days 7 and 30, which increased the nutrient contents. The microplastic facilitated the accumulation of high-molecular-weight humic-like material between days 7 and 30. The DOM solutions were mainly comprised of high-molecular-weight humic-like material in CK and M1 and of high-molecular-weight humic-like material and tyrosine-like material in M2. The Microplastic stimulated the activities of both enzymes. Microplastic addition thus stimulated enzymatic activity, activated pools of organic C, N, and P, and was beneficial for the accumulation of dissolved organic C, N and P.


Deep 2-Hydroxyisobutyrylome in mouse liver expands the roles of lysine 2-hydroxyisobutyrylation pathway.

  • Runhua Du‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2022‎

Lysine 2-hydroxyisobutyrylation (Khib), a newly characterized post-translational modification, is conserved in both eukaryotic and prokaryotic cells. At present, only about 6500 Khib sites have been identified in mammalian cells, which is insufficient compared with the well-known acetylation and thus hinders the understanding of its roles in diverse cellular processes. Here, utilizing immunoaffinity enrichment coupled with LC-MS/MS approach, we carried out a deep proteomics analysis of Khib in mouse liver. A total of 20861 Khib sites in 3768 proteins were identified, which expands the known Khib sites by two folds and represents the deepest Khib proteome in mammalian cells currently. Bioinformatics analysis showed that the 2-hydroxyisobutyrylated proteins have different subcellular localizations and participate in a wide range of molecular functions and cellular processes, such as metabolic processes and disease-related pathways. In addition, RNA-Seq analysis revealed that 1470 genes up-regulated and 790 genes down-regulated in response to elevated Khib levels in HeLa cells. The 1470 up-regulated genes were mainly associated with human papillomavirus infection, ECM-receptor interaction, as well as protein digestion and absorption, while the 790 down-regulated genes were mainly enriched in the multiple diseases and Glycolysis/Gluconeogenesis processes. Taken together, our research largely expands the known Khib sites, which helps delineate the biological functions of the Khib pathway and provides mechanistic insights into how Khib exerts its functions in specific cellular pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: