Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Preoperative evaluation of microvascular invasion with circulating tumour DNA in operable hepatocellular carcinoma.

  • Dong Wang‎ et al.
  • Liver international : official journal of the International Association for the Study of the Liver‎
  • 2020‎

Microvascular invasion (MVI) is a critical prognostic factor for operable hepatocellular carcinoma (HCC). This study aimed to explore the performance of circulating tumour DNA (ctDNA) in evaluating MVI status preoperatively.


Radiographic and α-fetoprotein response predict pathologic complete response to immunotherapy plus a TKI in hepatocellular carcinoma: a multicenter study.

  • Cheng Huang‎ et al.
  • BMC cancer‎
  • 2023‎

Pathologic complete response (pCR) following preoperative systemic therapy is associated with improved outcomes after subsequent liver transplant/resection in hepatocellular carcinoma (HCC). However, the relationship between radiographic and histopathological response remains unclear.


The deubiquitinase EIF3H promotes hepatocellular carcinoma progression by stabilizing OGT and inhibiting ferroptosis.

  • Jianing Tang‎ et al.
  • Cell communication and signaling : CCS‎
  • 2023‎

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal human malignancies, and with quite limited treatment alternatives. The proteasome is responsible for most of the protein degradation in eukaryotic cells and required for the maintenance of intracellular homeostasis. However, its potential role in HCC is largely unknown. In the current study, we identified eukaryotic translation initiation factor 3 subunit H (EIF3H), belonging to the JAB1/MPN/MOV34 (JAMM) superfamily, as a bona fide deubiquitylase of O-GlcNAc transferase (OGT) in HCC. We explored that EIF3H was positively associated with OGT in HCC and was related to the unfavorable prognosis. EIF3H could interact with, deubiquitylate, and stabilize OGT in a deubiquitylase-dependent manner. Specifically, EIF3H was associated with the GT domain of ERα via its JAB/MP domain, thus inhibiting the K48-linked ubiquitin chain on OGT. Besides, we demonstrated that the knockdown of EIF3H significantly reduced OGT protein expression, cell proliferation and invasion, and caused G1/S arrest of HCC. We also found that the deletion of EIF3H prompted ferroptosis in HCC cells. Finally, the effects of EIF3H depletion could be reversed by further OGT overexpression, implying that the OGT status is indispensable for EIF3H function in HCC carcinogenesis. In summary, our study described the oncogenic function of EIF3H and revealed an interesting post-translational mechanism between EIF3H, OGT, and ferroptosis in HCC. Targeting the EIF3H may be a promising approach in HCC. Video Abstract.


MINDY1 promotes breast cancer cell proliferation by stabilizing estrogen receptor α.

  • Jianing Tang‎ et al.
  • Cell death & disease‎
  • 2021‎

Breast cancer is the most commonly diagnosed malignant tumor among females. Estrogen receptor α (ERα) is initially expressed in 70% of breast cancers and is a well-known target of endocrine therapy for ERα-positive breast cancer. In the present study, we identified MINDY1, a member belongs to the motif interacting with Ubcontaining novel DUB family (MINDY), as a potential deubiquitylase of ERα in breast cancer. There was a positive correlation between ERα and MINDY1 protein levels in human breast cancer tissues. We found that high expression of MINDY1 was associated with poor prognosis. MINDY1 interacted with ERα, thereby mediating the deubiquitination of ERα and increased its stability in a deubiquitylation activity-dependent manner. MINDY1 depletion significantly decreased the ERα protein level and ERα signaling activity in breast cancer cells. Specifically, MINDY1 associated with the N-terminal of ERα via its catalytic domain, thus inhibiting K48-specific poly-ubiquitination process on ERα protein. In addition, MINDY1 depletion led to growth inhibition and cell cycle arrest of ERα-positive breast cancer cells. Finally, overexpression of ERα could rescue the MINDY1 depletion-induced growth inhibition both in vitro and in vivo, suggesting that MINDY1 promotes breast carcinogenesis through increasing ERα stability. Overall, our study proposed a novel post-translational mechanism of ERα in supporting breast cancer progression. Targeting the MINDY1 may prove to be a promising strategy for patients with ERα-positive breast cancer.


Development of tryptophan metabolism patterns to predict prognosis and immunotherapeutic responses in hepatocellular carcinoma.

  • Guo Long‎ et al.
  • Aging‎
  • 2023‎

Tryptophan metabolism is associated with tumorigenesis and tumor immune response in various cancers. Liver is the main place where tryptophan catabolism is performed. However, the role of tryptophan metabolism in hepatocellular carcinoma (HCC) has not been well clarified. In the present study, we described the mutations of 42 tryptophan metabolism-related genes (TRPGs) in HCC cohorts. Then, HCC patients were well distributed into two subtypes based on the expression profiles of the 42 TRPGs. The clinicopathological characteristics and tumor microenvironmental landscape of the two subtypes were profiled. We also established a TRPGs scoring system and identified four hallmark TRPGs, including ACSL3, ADH1B, ALDH2, and HADHA. Univariate and multivariate Cox regression analysis revealed that the TRPG signature was an independent prognostic indicator for HCC patients. Besides, the predictive accuracy of the TRPG signature was assessed by the receiver operating characteristic curve (ROC) analysis. These results showed that the TRPG risk model had an excellent capability in predicting survival in both TCGA and GEO HCC cohorts. Moreover, we discovered that the TRPG signature was significantly related to the different immune infiltration and therapeutic drug sensitivity. The functional experiments and immunohistochemistry staining analysis also validated the results above. Our comprehensive analysis enhanced our understanding of TRPGs in HCC. A novel predictive model based on TRPGs was built, which may be considered as a beneficial tool for predicting the clinical outcomes of HCC patients.


USP8 positively regulates hepatocellular carcinoma tumorigenesis and confers ferroptosis resistance through β-catenin stabilization.

  • Jianing Tang‎ et al.
  • Cell death & disease‎
  • 2023‎

Hepatocellular carcinoma (HCC) is the most common type of primary hepatic carcinoma, which is a growing public health problem worldwide. One of the main genetic alterations in HCC is the deregulated Wnt/β-catenin signaling, activation of β-catenin is associated with the progression of HCC. In the present study, we aimed to identify novel modulators in controlling β-catenin ubiquitination and stability. USP8 was overexpressed in HCC tissues and correlated with β-catenin protein level. High expression of USP8 indicated poor prognosis of HCC patients. USP8 depletion significantly decreased β-catenin protein level, β-catenin target genes expression and TOP-luciferase activity in HCC cells. Further mechanistic study revealed that the USP domain of USP8 interacted with the ARM domain of β-catenin. USP8 stabilized β-catenin protein via inhibiting K48-specific poly-ubiquitination process on β-catenin protein. In addition, USP8 depletion inhibited the proliferation, invasion and stemness of HCC cells and conferred ferroptosis resistance, which effects could be further rescued by β-catenin overexpression. In addition, the USP8 inhibitor DUB-IN-3 inhibited the aggressive phenotype and promoted ferroptosis of HCC cells through degradation of β-catenin. Thus, our study demonstrated that USP8 activated the Wnt/beta-catenin signaling through a post-translational mechanism of β-catenin. High expression of USP8 promoted the progression and inhibited ferroptosis of HCC. Targeting the USP8 may serve as a promising strategy for patients with HCC.


Insulin alleviates LPS-induced ARDS via inhibiting CUL4B-mediated proteasomal degradation and restoring expression level of Na,K-ATPase α1 subunit through elevating HCF-1.

  • Xue-Ting Huang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Acute respiratory distress syndrome (ARDS) is a critical disease with a high mortality rate, characterized by obstinate hypoxemia caused by accumulation of alveolar fluid and excessive uncontrolled inflammation. Na,K-ATPase α1 (ATP1A1) subunit is an important component of Na,K-ATPase that transports Na+ and K+ and scavenges alveolar fluid. The function of Na,K-ATPase is always impaired during ARDS and results in more severe symptoms of ARDS. However, the regulatory mechanism of Na,K-ATPase after ARDS remains unclear. Here, we revealed ATP1A1 was downregulated post-transcriptionally by an E3 ligase component CUL4B mediated proteasomal degradation. Moreover, we found insulin could inhibit the upregulation of CUL4B in an insulin receptor cofactor HCF-1-dependent manner. Our study resolved the molecular mechanism underlying the clearance impairment of alveolar fluid and provided a clue for the usage of insulin as a potential therapeutic medicine for ARDS.


Targeting USP8 Inhibits O-GlcNAcylation of SLC7A11 to Promote Ferroptosis of Hepatocellular Carcinoma via Stabilization of OGT.

  • Jianing Tang‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

Hepatocellular carcinoma (HCC) is a lethal and aggressive human malignancy. The present study examins the anti-tumor effects of deubiquitylating enzymes (DUB) inhibitors in HCC. It is found that the inhibitor of ubiquitin specific peptidase 8 (USP8) and DUB-IN-3 shows the most effective anti-cancer responses. Targeting USP8 inhibits the proliferation of HCC and induces cell ferroptosis. In vivo xenograft and metastasis experiments indicate that inhibition of USP8 suppresses tumor growth and lung metastasis. DUB-IN-3 treatment or USP8 depletion decrease intracellular cystine levels and glutathione biosynthesis while increasing the accumulation of reactive oxygen species (ROS). Mechanistical studies reveal that USP8 stabilizes O-GlcNAc transferase (OGT) via inhibiting K48-specific poly-ubiquitination process on OGT protein at K117 site, and STE20-like kinase (SLK)-mediated S716 phosphorylation of USP8 is required for the interaction with OGT. Most importantly, OGT O-GlcNAcylates solute carrier family 7, member 11 (SLC7A11) at Ser26 in HCC cells, which is essential for SLC7A11 to import the cystine from the extracellular environment. Collectively, this study demonstrates that pharmacological inhibition or knockout of USP8 can inhibit the progression of HCC and induce ferroptosis via decreasing the stability of OGT, which imposes a great challenge that targeting of USP8 is a potential approach for HCC treatment.


ATR-dependent ubiquitin-specific protease 20 phosphorylation confers oxaliplatin and ferroptosis resistance.

  • Jianing Tang‎ et al.
  • MedComm‎
  • 2023‎

Oxaliplatin (OXA) resistance is a major clinic challenge in hepatocellular carcinoma (HCC). Ferroptosis is a kind of iron-dependent cell death. Triggering ferroptosis is considered to restore sensitivity to chemotherapy. In the present study, we found that USP20 was overexpressed in OXA-resistant HCC cells. High expression of USP20 in HCC was associated with poor prognosis. USP20 contributes OXA resistance and suppress ferroptosis in HCC. Pharmacological inhibition or knockdown of USP20 triggered ferroptosis and increased the sensitivity of HCC cells to OXA both in vitro and in vivo. Coimmunoprecipitation results revealed that the UCH domain of USP20 interacted with the N terminal of SLC7A11. USP20 stabilized SLC7A11 via removing K48-linked polyubiquitination of SLC7A11 protein at K30 and K37. Most importantly, DNA damage-induced ATR activation was required for Ser132 and Ser368 phosphorylation of USP20. USP20 phosphorylation at Ser132 and Ser368 enhanced its stability and thus conferred OXA and ferroptosis resistance of HCC cells. Our study reveals a previously undiscovered association between OXA and ferroptosis and provides new insight into mechanisms regarding how DNA damage therapies always lead to therapeutic resistance. Therefore, targeting USP20 may mitigate the development of drug resistance and promote ferroptosis of HCC in patients receiving chemotherapy.


Identification of senescence-related subtypes, establishment of a prognosis model, and characterization of a tumor microenvironment infiltration in breast cancer.

  • Yanling Zhou‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Breast cancer is a malignancy with the highest incidence and mortality in women worldwide. Senescence is a model of arrest in the cell cycle, which plays an important role in tumor progression, while the prognostic value of cellular senescence-related genes (SRGs) in evaluating immune infiltration and clinical outcomes of breast cancer needs further investigation. In the present study, we identified two distinct molecular subtypes according to the expression profiles of 278 SRGs. We further explored the dysregulated pathways between the two subtypes and constructed a microenvironmental landscape of breast cancer. Subsequently, we established a senescence-related scoring signature based on the expression of four SRGs in the training set (GSE21653) and validated its accuracy in two validation sets (GSE20685 and GSE25055). In the training set, patients in the high-risk group had a worse prognosis than patients in the low-risk group. Multivariate Cox regression analysis showed that risk score was an independent prognostic indicator. Receiver operating characteristic curve (ROC) analysis proved the predictive accuracy of the signature. The prognostic value of this signature was further confirmed in the validation sets. We also observed that a lower risk score was associated with a higher pathological response rate in patients with neoadjuvant chemotherapy. We next performed functional experiments to validate the results above. Our study demonstrated that these cellular senescence patterns effectively grouped patients at low or high risk of disease recurrence and revealed their potential roles in the tumor-immune-stromal microenvironment. These findings enhanced our understanding of the tumor immune microenvironment and provided new insights for improving the prognosis of breast cancer patients.


Identification and validation of a tyrosine metabolism-related prognostic prediction model and characterization of the tumor microenvironment infiltration in hepatocellular carcinoma.

  • Yangying Zhou‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Hepatocellular carcinoma (HCC) is an aggressive and heterogeneous disease characterized by high morbidity and mortality. The liver is the vital organ that participates in tyrosine catabolism, and abnormal tyrosine metabolism could cause various diseases, including HCC. Besides, the tumor immune microenvironment is involved in carcinogenesis and can influence the patients' clinical outcomes. However, the potential role of tyrosine metabolism pattern and immune molecular signature is poorly understood in HCC.


Identification of different proteins binding to Na, K-ATPase α1 in LPS-induced ARDS cell model by proteomic analysis.

  • Xu-Peng Wen‎ et al.
  • Proteome science‎
  • 2022‎

Acute respiratory distress syndrome (ARDS) is characterized by refractory hypoxemia caused by accumulation of pulmonary fluid, which is related to inflammatory cell infiltration, impaired tight junction of pulmonary epithelium and impaired Na, K-ATPase function, especially Na, K-ATPase α1 subunit. Up until now, the pathogenic mechanism at the level of protein during lipopolysaccharide- (LPS-) induced ARDS remains unclear.


Spectrum of BRCA1 interacting helicase 1 aberrations and potential prognostic and therapeutic implication: a pan cancer analysis.

  • Guo Long‎ et al.
  • Scientific reports‎
  • 2023‎

BRCA1 interacting helicase 1 (BRIP1) alteration was crucial in tumors and it was a potential therapeutic target in ovarian serous cystadenocarcinoma (OV). Although a small number of studies had focused on BRIP1, an extensive study of BRIP1 genetic mutation and its clinical application in different cancer types had not been analyzed. In the current study, we analyzed BRIP1 abnormal expression, methylation, mutation, and their clinical application via several extensive datasets, which covered over 10,000 tumor samples across more than 30 cancer types. The total mutation rate of BRIP1 was rare in pan cancer. Its alteration frequency, oncogenic effects, mutation, and therapeutic implications were different in each cancer. 242 BRIP1 mutations were found across 32 cancer types. UCEC had the highest alteration (mutation and CNV) frequency. In addition, BRIP1 was a crucial oncogenic factor in OV and BRCA. BRIP1 mutation in PRAD was targetable, and FDA had approved a new drug. Moreover, Kaplan-Meier curve analysis showed that BRIP1 expression and genetic aberrations were closely related to patient survival in several cancers, indicating their potential for application as new tumor markers and therapeutic targets. The current study profiled the total BRIP1 mutation spectrum and offered an extensive molecular outlook of BRIP1 in a pan cancer analysis. And it suggested a brand-new perspective for clinical cancer therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: