Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 52 papers

MicroRNA-27a Induces Mesangial Cell Injury by Targeting of PPARγ, and its In Vivo Knockdown Prevents Progression of Diabetic Nephropathy.

  • Lina Wu‎ et al.
  • Scientific reports‎
  • 2016‎

MicroRNAs play important roles in the pathogenesis of diabetic nephropathy (DN). In this study, we found that high glucose upregulated miR-27a expression in cultured glomerular mesangial cells and in the kidney glomeruli of streptozotocin (STZ)-induced diabetic rats. miR-27a knockdown prevented high glucose-induced mesangial cell proliferation and also blocked the upregulation of extracellular matrix (ECM)-associated profibrotic genes. Reduction of cell proliferation and profibrotic gene expression by a miR-27a inhibitor depended upon the expression of peroxisome proliferator-activated receptor γ (PPARγ). Further studies showed that miR-27a negatively regulated PPARγ expression by binding to the 3'-untranslated region of rat PPARγ. An antisense oligonucleotide specific to miR-27a (antagomir-27a) significantly reduced renal miR-27a expression in STZ-induced diabetic rats and significantly increased PPARγ levels. Antagomir-27a also reduced kidney ECM accumulation and proteinuria in STZ-induced diabetic rats. These findings suggest that specific reduction of renal miR-27a decreases renal fibrosis, which may be explained in part by its regulation of PPARγ, and that targeting miR-27a may represent a novel therapeutic approach for DN.


Overexpression of FOXO1 ameliorates the podocyte epithelial-mesenchymal transition induced by high glucose in vitro and in vivo.

  • Mengmeng Du‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Accumulating evidence has suggested that the epithelial-mesenchymal transition (EMT) is a pathway that potentially leads to podocyte depletion and proteinuria in diabetic nephropathy (DN). Therefore, this study was designed to investigate the protective effects of forkhead transcription factor O1 (FOXO1) on podocyte EMT, under high-glucose (HG) conditions in vitro and under diabetic conditions in vivo. The results showed that HG-induced podocyte EMT was associated with FOXO1 inactivation, which was accompanied by activation of the transforming growth factor (TGF)-β1/SMAD3/integrin-linked kinase (ILK) pathway. Accordingly, constitutive FOXO1 activation suppressed the TGF-β1/Smad3/ILK pathway and partially reversed EMT, similar to the effects observed after treatment with SIS3 or QLT0267, which are selective inhibitors of TGF-β1-dependent SMAD3 phosphorylation and ILK, respectively. In addition, lentiviral-mediated FOXO1 overexpression in the kidneys of diabetic mice considerably increased FOXO1 expression and activation, while decreasing proteinuria and renal pathological injury. These data suggested that forced FOXO1 activation inhibited HG-induced podocyte EMT and ameliorated proteinuria and renal injury in diabetic mice. Our findings further highlighted that FOXO1 played a protective role against diabetes in mice and may potentially be used as a novel therapeutic target for treating diabetic nephropathy.


FOXS1 is regulated by GLI1 and miR-125a-5p and promotes cell proliferation and EMT in gastric cancer.

  • Sen Wang‎ et al.
  • Scientific reports‎
  • 2019‎

Gastric cancer (GC) is the fourth most common malignant neoplasm and the second leading cause of cancer death. Identification of key molecular signaling pathways involved in gastric carcinogenesis and progression facilitates early GC diagnosis and the development of targeted therapies for advanced GC patients. Emerging evidence has revealed a close correlation between forkhead box (FOX) proteins and cancer development. However, the prognostic significance of forkhead box S1 (FOXS1) in patients with GC and the function of FOXS1 in GC progression remain undefined. In this study, we found that upregulation of FOXS1 was frequently detected in GC tissues and strongly correlated with an aggressive phenotype and poor prognosis. Functional assays confirmed that FOXS1 knockdown suppressed cell proliferation and colony numbers, with induction of cell arrest in the G0/G1 phase of the cell cycle, whereas forced expression of FOXS1 had the opposite effect. Additionally, forced expression of FOXS1 accelerated tumor growth in vivo and increased cell migration and invasion through promoting epithelial-mesenchymal transition (EMT) both in vitro and in vivo. Mechanistically, the core promoter region of FOXS1 was identified at nucleotides -660~ +1, and NFKB1 indirectly bind the motif on FOXS1 promoters and inhibit FOXS1 expression. Gene set enrichment analysis revealed that the FOXS1 gene was most abundantly enriched in the hedgehog signaling pathway and that GLI1 expression was significantly correlated with FOXS1 expression in GC. GLI1 directly bound to the promoter motif of FOXS1 and significantly decreased FOXS1 expression. Finally, we found that miR-125a-5p repressed FOXS1 expression at the translational level by binding to the 3' untranslated region (UTR) of FOXS1. Together, these results suggest that FOXS1 can promote GC development and could be exploited as a diagnostic and prognostic biomarker for GC.


FoxO1 Promotes Mitophagy in the Podocytes of Diabetic Male Mice via the PINK1/Parkin Pathway.

  • Wen Li‎ et al.
  • Endocrinology‎
  • 2017‎

We recently showed that forkhead-box class O1 (FoxO1) activation protects against high glucose-induced injury by preventing mitochondrial dysfunction in the rat kidney cortex. In addition, FoxO1 has been reported to mediate putative kinase 1 (PINK1) transcription and promote autophagy in response to mitochondrial oxidative stress in murine cardiomyocytes. In this study, we ascertained whether overexpressing FoxO1 in the kidney cortex reverses preestablished diabetic nephropathy in animal models. The effect of FoxO1 on mitophagy signaling pathways was evaluated in mouse podocytes. In vivo experiments were performed in male KM mice. A mouse model of streptozotocin (STZ)-induced type 1 diabetes (T1D) was used, and lentiviral vectors were injected into the kidney cortex to overexpress FoxO1. A mouse podocyte cell line was treated with high concentrations of glucose and genetically modified using lentiviral vectors. We found aberrant mitochondrial morphology and reduced adenosine triphosphate production. These mitochondrial abnormalities were due to decreased mitophagy via reduced phosphatase/tensin homolog on chromosome 10-induced PINK1/Parkin-dependent signaling. FoxO1 upregulation and PINK1/Parkin pathway activation can individually restore injured podocytes in STZ-induced T1D mice. Our results link the antioxidative activity of FoxO1 with PINK1/Parkin-induced mitophagy, indicating a novel role of FoxO1 in diabetic nephropathy.


ARNTL2 promotes pancreatic ductal adenocarcinoma progression through TGF/BETA pathway and is regulated by miR-26a-5p.

  • Zhifang Wang‎ et al.
  • Cell death & disease‎
  • 2020‎

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and the therapeutic outcomes remain undesirable. Increasing evidence shows that aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2) plays crucial roles in tumorigenesis of multiple tumors. However, the expression status and functions of ARNTL2 in PDAC remain elusive. Here we showed that ARNTL2 expression was markedly upregulated in PDAC tissues and cell lines. elevated expression of ARNTL2 was positively related to unfavorable prognosis. Knockdown of ARNTL2 could suppress motility and invasive ability of PDAC cells in vitro, as well as tumor development in vivo. In addition, microRNA-26a-5p (miR-26a-5p) was identified as the crucial specific arbitrator for ARNTL2 expression and the expression of miR-26a-5p was inversely correlated with ARNTL2 expression in PDAC tissues. Functionally, elevated expression of miR-26a-5p was found to inhibit the proliferation, migration, and invasion of PDAC cells in vitro, while ARNTL2 increased expression could partially abolish the suppressive effect of miR-26a-5p. Mechanism study indicated that elevated expression of miR-26a-5p suppressed TGF/BETA signaling pathway by targeting ARNTL2 in PDAC cells. In conclusion, our data suggested that ARNTL2 acted as an oncogene to regulate PDAC growth. MiR-26a-5p/ARNTL2 axis may be a novel therapeutic candidate target in PDAC treatment.


Dapagliflozin Attenuates Renal Tubulointerstitial Fibrosis Associated With Type 1 Diabetes by Regulating STAT1/TGFβ1 Signaling.

  • Fengjuan Huang‎ et al.
  • Frontiers in endocrinology‎
  • 2019‎

Tubulointerstitial fibrosis (TIF) plays an important role in the progression of renal fibrosis in diabetic nephropathy (DN). Accumulating evidence supports a crucial inhibitory effect of dapagliflozin, a SGLT2 inhibitor, on TIF, but the underlying mechanisms remain largely unknown. This study aimed to shed light on the efficacy of dapagliflozin in reducing TIF as well as its possible impact on renal function. TIF in human kidney biopsies obtained from patients with DN was quantified by histopathological staining. In vitro, HK-2 cells were incubated in high glucose with dapagliflozin or fludarabine, and epithelial-mesenchymal transition (EMT) was determined. In vivo experiments were performed in streptozotocin (STZ)-induced type 1 diabetic mice treated with dapagliflozin by gavage for 16 weeks, after which specific functional characteristics and TIF were analyzed. In both DN patients and diabetic mice, fibronectin and Col IV, as well as STAT1 protein in the kidneys were increased as compared with controls. Dapagliflozin significantly decreased blood glucose, and renal STAT1 and TGF-β1 expression in mice. Furthermore, dapagliflozin improved renal function, and attenuated diabetes-induced TIF. In HK-2 cells, dapagliflozin, and fludarabine directly decreased aberrant STAT1 expression and reversed high glucose-induced downregulation of E-cadherin and α-SMA induction. Thus, the results demonstrate that dapagliflozin not only improves hyperglycemia but also slows down the progression of diabetes-associated renal TIF by improving hyperglycemia-induced activation of the STAT1/TGF-β1 pathway.


Association between Duration of Exercise (MET Hours per Week) and the Risk of Decreased eGFR: A Cross-Sectional Study Based on a Large Chinese Population.

  • Jie Wang‎ et al.
  • Journal of diabetes research‎
  • 2019‎

Physical activity is effective in preventing chronic diseases. However, the impact of different durations of exercise on human health is unknown, especially among people with diabetes or prediabetes.


Age-specific modifiable risk factor profiles for cardiovascular disease and all-cause mortality: a nationwide, population-based, prospective cohort study.

  • Tiange Wang‎ et al.
  • The Lancet regional health. Western Pacific‎
  • 2021‎

National investigations on age-specific modifiable risk factor profiles for cardiovascular disease (CVD) and mortality are scarce in China, the country that is experiencing a huge cardiometabolic burden exacerbated by population ageing.


Interaction between smoking and diabetes in relation to subsequent risk of cardiovascular events.

  • Yang Yang‎ et al.
  • Cardiovascular diabetology‎
  • 2022‎

Whether smoking modifies the associations of diabetes and risk factor management with subsequent risk of cardiovascular disease (CVD), and whether the smoking related CVD risk differs among people with and without diabetes are unclear. This study aimed to examine the associations and interactions of smoking, diabetes, and risk factor management in relation to incident CVD.


Urinary Exosomal MiRNA-4534 as a Novel Diagnostic Biomarker for Diabetic Kidney Disease.

  • Yanyan Zhao‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Urinary exosomal miRNAs can reflect the physiological and possibly pathophysiological state of cells lining the kidney and participate in the regulation of transcription and translation of proteins, which are playing an important role in the pathogenesis of diabetic kidney disease. In the present study, urine was collected from DM and DKD patients with a duration more than 10 years and urinary exosomal miRNA profiling was conducted in urinary exosomes obtained from three patients with type 2 diabetes (DM) and three patients with type 2 diabetic kidney disease (DKD) using Exiqon's microRNA arrays. In total, the expression of 14 miRNAs (miR-4491, miR-2117, miR-4507, miR-5088-5P, miR-1587, miR-219a-3p, miR-5091, miR-498, miR-4687-3p, miR-516b-5p, miR-4534, miR-1275, miR-5007-3p, and miR-4516) was up-regulated (>2-fold) in DKD patients compared to healthy controls and DM patients. We used qRT-PCR based analysis of these 14 miRNAs in urinary exosomes from 14 DKD to 14 DM patients in confirmation cohort, among which seven miRNAs were consistent with the microarray results. The expressions of miR-4534 and miR-516b-5p correlated with trace proteinuria levels in the confirmation cohort. In conclusion, it has been confirmed that the expression of urinary exosomal miRNA in patients with type 2 diabetes DKD has changed. Mir-4534 might affect the FoxO signaling pathway by targeting BNIP3, and is expected to become a new biomarker for the progression of type 2 DKD disease, which will provide further research on the pathogenesis of DKD.


Selective sodium-glucose cotransporter-2 inhibitors in the improvement of hemoglobin and hematocrit in patients with type 2 diabetes mellitus: a network meta-analysis.

  • Yuanyuan Luo‎ et al.
  • Frontiers in endocrinology‎
  • 2024‎

To compare the effects of different selective sodium-glucose cotransporter-2 inhibitors (SGLT2i) on hemoglobin and hematocrit in patients with type 2 diabetes mellitus (T2DM) with a network meta-analysis (NMA).


Ablations of ghrelin and ghrelin receptor exhibit differential metabolic phenotypes and thermogenic capacity during aging.

  • Xiaojun Ma‎ et al.
  • PloS one‎
  • 2011‎

Obesity is a hallmark of aging in many Western societies, and is a precursor to numerous serious age-related diseases. Ghrelin (Ghrl), via its receptor (growth hormone secretagogue receptor, GHS-R), is shown to stimulate GH secretion and appetite. Surprisingly, our previous studies showed that Ghrl(-/-) mice have impaired thermoregulatory responses to cold and fasting stresses, while Ghsr(-/-) mice are adaptive.


Liraglutide, Sitagliptin, and Insulin Glargine Added to Metformin: The Effect on Body Weight and Intrahepatic Lipid in Patients With Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease.

  • Jinhua Yan‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2019‎

To investigate the effect of antidiabetic agents on nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM), 75 patients with T2DM and NAFLD under inadequate glycemic control by metformin were randomized (1:1:1) to receive add-on liraglutide, sitagliptin, or insulin glargine in this 26-week trial. The primary endpoint was the change in intrahepatic lipid (IHL) from baseline to week 26 as quantified by magnetic resonance imaging-estimated proton density fat fraction (MRI-PDFF). Secondary endpoints included changes in abdominal adiposity (subcutaneous adipose tissue [SAT] and visceral adipose tissue [VAT]), glycated hemoglobin, and body weight from baseline to week 26. We analysed data from intent-to-treat population. MRI-PDFF, VAT, and weight decreased significantly with liraglutide (15.4% ± 5.6% to 12.5% ± 6.4%, P < 0.001; 171.4 ± 27.8 to 150.5 ± 30.8, P = 0.003; 86.6 ± 12.9 kg to 82.9 ± 11.1 kg, P = 0.005, respectively) and sitagliptin (15.5% ± 5.6% to 11.7% ± 5.0%, P = 0.001; 153.4 ± 31.5 to 139.8 ± 27.3, P = 0.027; 88.2 ± 13.6 kg to 86.5 ± 13.2 kg, P = 0.005, respectively). No significant change in MRI-PDFF, VAT, or body weight was observed with insulin glargine. SAT decreased significantly in the liraglutide group (239.9 ± 69.0 to 211.3 ± 76.1; P = 0.020) but not in the sitagliptin and insulin glargine groups. Changes from baseline in MRI-PDFF, VAT, and body weight were significantly greater with liraglutide than insulin glargine but did not differ significantly between liraglutide and sitagliptin. Conclusion: Combined with metformin, both liraglutide and sitagliptin, but not insulin glargine, reduced body weight, IHL, and VAT in addition to improving glycemic control in patients with T2DM and NAFLD.


Vitamin D supplement ameliorates hippocampal metabolism in diabetic rats.

  • Feng Guo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Vitamin D deficiency induced by diabetes mellitus is tightly associated with neurodegenerative diseases, but the mechanism is still unknown. Endoplasmic reticulum stress (ER stress) is involved in hippocampal lesion and promote diabetic neuropathy, so we focus on the effects of 1, 25-dihydroxy vitamin D3 on ER stress in hippocampus of diabetic rats. Streptozotocin (STZ)-induced diabetic rats were administrated with different doses of vitamin D and divided into 3 groups: high, low, and blank, compared to wild-type rats which were received the same treatment. At the end of 12 weeks of treatment, the brains of the rats were analyzed by proton magnetic resonance spectroscopy (1H-MRS). Rats were then weighed, tested for blood glucose, serum Ca, P, and vitamin D3, and sacrificed for histopathological analysis of the hippocampus. Neuronal nitric oxide synthase (nNOS) and vitamin D receptor (VDR) expression were measured, as well as ER stress markers, including glucose-regulated protein78 (GRP78), protein kinase-like endoplasmic reticulum kinase (PERK) phosphorylation, eukaryotic initiation factor 2α(eIF-2α) phosphorylation, and CCAAT enhancer-binding protein homologous protein (CHOP). Our study showed that treated with appropriate concentration of active vitamin D could decrease the number of pathological pyramidal neurons, improve hippocampal nerve metabolism, and reduce the over-expression of nNOS, along with the relieved activation of ER stress in hippocampus of diabetic rats. These results suggest that 1,25-dihydroxy vitamin D3 treatment can ameliorate hyperglycemia-induced damage on hippocampal metabolism, possibly through alleviating the aberrant activation of ER stress.


FoxO1-mediated inhibition of STAT1 alleviates tubulointerstitial fibrosis and tubule apoptosis in diabetic kidney disease.

  • Fengjuan Huang‎ et al.
  • EBioMedicine‎
  • 2019‎

Tubulointerstitial fibrosis (TIF) plays an important role in the progression of diabetic kidney disease (DKD). Forkhead box O1 (FoxO1) is involved in the regulation of metabolism and cell apoptosis, but its function in renal TIF induced by DKD is less well understood.


Association of MTHFR C677T polymorphism and type 2 diabetes mellitus (T2DM) susceptibility.

  • Yanzi Meng‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2019‎

Methylenetetrahydrofolate reductase (MTHFR) is essential in mediating folate metabolism, and thus plays an important role in diabetes and diabetic complications. MTHFR C677T (rs1801133 C>T) polymorphism has been proposed to be linked with type 2 diabetes mellitus (T2DM) susceptibility. However, the conclusions are inconsistent. Therefore, we rechecked their linkage aiming to obtain a more reliable estimation by performing an updated meta-analysis.


Association Between Age at Diagnosis of Type 2 Diabetes and Cardiovascular Diseases: A Nationwide, Population-Based, Cohort Study.

  • Chunyan Hu‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Nationwide studies focusing on the impact of early-onset type 2 diabetes and obesity on the development of cardiovascular diseases (CVD) are limited in China. We aimed to investigate the association between age at diagnosis of type 2 diabetes and the risk of CVD, and to further examine the modifying effect of obesity on this association among Chinese adults.


Amino acids, microbiota-related metabolites, and the risk of incident diabetes among normoglycemic Chinese adults: Findings from the 4C study.

  • Shuangyuan Wang‎ et al.
  • Cell reports. Medicine‎
  • 2022‎

Although previous studies suggest that amino acids (AAs) and microbiota-related metabolites (MRMs) are associated with type 2 diabetes mellitus (T2DM), the results remain unclear among normoglycemic populations. We test 28 serum AAs and 22 MRMs in 3,414 subjects with incident diabetes and matched normoglycemic controls from the China Cardiometabolic Disease and Cancer Cohort (4C) Study. In fully adjusted logistic regression models, per SD increment of branched-chain AAs, aromatic AAs, asparagine, alanine, glutamic acid, homoserine, 2-aminoadipic acid, histidine, methionine, and proline are positively associated with incident T2DM. In the MRM panel, serum carnitines, N-acetyltryptophan, and uric acid are positively associated with incident T2DM. Causal mediation analyses indicate 34 significant causal mediation linkages, with 88.2% through obesity and lipids. Variances explained in the serum metabolites are modestly limited in the comprehensive catalog of risk factor-metabolite-diabetes associations. These findings reveal that systematic AAs and MRMs change profile before T2DM onset and support a potential role of metabolic alterations in the pathogenesis of diabetes.


Sodium Glucose Cotransporter 2 Inhibitors Reduce the Risk of Heart Failure Hospitalization in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

  • Ailing Zhang‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

To evaluate the impact of sodium glucose cotransporter 2 inhibitors (SGLT-2i) on risk of heart failure hospitalization in patients with type 2 diabetes.


Baicalin Exerts a Protective Effect in Diabetic Nephropathy by Repressing Inflammation and Oxidative Stress Through the SphK1/S1P/NF-κB Signaling Pathway.

  • Gaofei Ren‎ et al.
  • Diabetes, metabolic syndrome and obesity : targets and therapy‎
  • 2023‎

Inflammation and oxidative stress contribute to the development of diabetic nephropathy (DN). Baicalin (BA) shows renal protection against DN through its anti-inflammatory and anti-oxidant properties. However, the molecular mechanism by which BA exerts the therapeutic effects on DN remains to be investigated.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: