Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

The stimulatory activity of plasma in patients with advanced non-small cell lung cancer requires TLR-stimulating nucleic acid immunoglobulin complexes and discriminates responsiveness to chemotherapy.

  • Zengguang Xu‎ et al.
  • Cancer cell international‎
  • 2014‎

Therapeutic options for patients with non-small cell lung cancer (NSCLC) are often restricted to systemic chemotherapy. However, the molecular and cellular processes during chemotherapy of advanced NSCLC patients still remain unclear. Here we investigated the stimulatory activity of plasma in advanced NSCLC patients and its correlation with chemotherapy.


Carboxyl-terminal truncated HBx contributes to invasion and metastasis via deregulating metastasis suppressors in hepatocellular carcinoma.

  • Weihua Li‎ et al.
  • Oncotarget‎
  • 2016‎

Hepatitis B virus (HBV) X protein (HBx), a trans-regulator, is frequently expressed in truncated form without carboxyl-terminus in hepatocellular carcinoma (HCC), but its functional mechanisms are not fully defined. In this report, we investigated frequency of this natural HBx mutant in HCCs and its functional significance. In 102 HBV-infected patients with HCC, C-terminal truncation of HBx, in contrast to full-length HBx, were more prevalent in tumors (70.6%) rather than adjacent non-tumorous tissues (29.4%) (p = 0.0032). Furthermore, two naturally-occurring HBx variants (HBxΔ31), which have 31 amino acids (aa) deleted (codons 123-125/124-126) at C-terminus were identified in tumors and found that the presence of HBxΔ31 significantly correlated with intrahepatic metastasis. We also show that over-expression of HBxΔ31 enhanced hepatoma cell invasion in vitro and metastasis in vivo compared to full-length HBx. Interestingly, HBxΔ31 exerts this function via down-regulating Maspin, RhoGDIα and CAPZB, a set of putative metastasis-suppressors in HCC, in part, by enhancing the binding of transcriptional repressor, myc-associated zinc finger protein (MAZ) to the promoters through physical association with MAZ. Notably, these HBxΔ31-repressed proteins were also significantly lower expression in a subset of HCC tissues with C-terminal HBx truncation than the adjacent non-tumorous tissues, highlighting the clinical significance of this novel HBxΔ31-driven metastatic molecular cascade. Our data suggest that C-terminal truncation of HBx, particularly breakpoints at 124aa, plays a role in enhancing hepatoma cell invasion and metastasis by deregulating a set of metastasis-suppressors partially through MAZ, thus uncovering a novel mechanism for the progression of HBV-associated hepatocarcinogenesis.


Adipose-Derived Exosomes Exert Proatherogenic Effects by Regulating Macrophage Foam Cell Formation and Polarization.

  • Zulong Xie‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Obesity is causally associated with atherosclerosis, and adipose tissue (AT)-derived exosomes may be implicated in the metabolic complications of obesity. However, the precise role of AT-exosomes in atherogenesis remains unclear. We herein aimed to assess the effect of AT-exosomes on macrophage foam cell formation and polarization and subsequent atherosclerosis development.


miR-34b-5p inhibition attenuates lung inflammation and apoptosis in an LPS-induced acute lung injury mouse model by targeting progranulin.

  • Wang Xie‎ et al.
  • Journal of cellular physiology‎
  • 2018‎

Inflammation and apoptosis play important roles in the initiation and progression of acute lung injury (ALI). Our previous study has shown that progranulin (PGRN) exerts lung protective effects during LPS-induced ALI. Here, we have investigated the potential roles of PGRN-targeting microRNAs (miRNAs) in regulating inflammation and apoptosis in ALI and have highlighted the important role of PGRN. LPS-induced lung injury and the protective roles of PGRN in ALI were first confirmed. The function of miR-34b-5p in ALI was determined by transfection of a miR-34b-5p mimic or inhibitor in intro and in vivo. The PGRN level gradually increased and subsequently significantly decreased, reaching its lowest value by 24 hr; PGRN was still elevated compared to the control. The change was accompanied by a release of inflammatory mediators and accumulation of inflammatory cells in the lungs. Using bioinformatics analysis and RT-PCR, we demonstrated that, among 12 putative miRNAs, the kinetics of the miR-34b-5p levels were closely associated with PGRN expression in the lung homogenates. The gain- and loss-of-function analysis, dual-luciferase reporter assays, and rescue experiments confirmed that PGRN was the functional target of miR-34b-5p. Intravenous injection of miR-34b-5p antagomir in vivo significantly inhibited miR-34b-5p up-regulation, reduced inflammatory cytokine release, decreased alveolar epithelial cell apoptosis, attenuated lung inflammation, and improved survival by targeting PGRN during ALI. miR-34b-5p knockdown attenuates lung inflammation and apoptosis in an LPS-induced ALI mouse model by targeting PGRN. This study shows that miR-34b-5p and PGRN may be potential targets for ALI treatments.


General Control of Amino Acid Synthesis 5-Like 1-Mediated Acetylation of Manganese Superoxide Dismutase Regulates Oxidative Stress in Diabetic Kidney Disease.

  • Tingting Lv‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2021‎

Diabetic kidney disease (DKD) is the major cause of end-stage renal disease (ESRD). In the past few decades, there has been a large amount of evidence to highlight the pivotal role of oxidative stress in the development and progression of DKD. However, the detailed molecular mechanisms are not fully elucidated. A new sight has been established that the mitochondrial acetyltransferase GCN5L1 participates in cellular redox homeostasis maintenance in DKD. Firstly, we found that the expression of GCN5L1 is significantly elevated both in human and mouse kidney tissues with DKD and in hyperglycemic renal tubular epithelial cells (TECs), while deletion of GCN5L1 could effectively ameliorate oxidative stress-induced renal injury in DKD. Furthermore, deletion of GCN5L1 could reduce MnSOD acetylation on lysine 68 and activate its activity, thereby scavenging excessive ROS and relieving oxidative stress-induced renal inflammation and fibrosis. In general, GCN5L1-mediated acetylation of MnSOD exacerbated oxidative stress-induced renal injury, suggesting that GCN5L1 might be a potential intervention target in DKD.


An accurate prediction of the origin for bone metastatic cancer using deep learning on digital pathological images.

  • Lianghui Zhu‎ et al.
  • EBioMedicine‎
  • 2023‎

Determining the origin of bone metastatic cancer (OBMC) is of great significance to clinical therapeutics. It is challenging for pathologists to determine the OBMC with limited clinical information and bone biopsy.


CHRNA3 polymorphism modifies lung adenocarcinoma risk in the Chinese Han population.

  • Ping He‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Recent genome-wide association studies (GWASs) have identified 15q25.1 as a lung cancer susceptibility locus. Here, we sought to explore the direct carcinogenic effects of genetic variants in this region on the risk of developing lung adenocarcinoma (ADC). Five common SNPs (rs8034191, rs16969968, rs1051730, rs938682, and rs8042374) spanning the 15q25.1 locus were assayed in a case-control study examining a cohort of 301 lung ADCs and 318 healthy controls. Stratification analysis by gender, smoking status, and tumor, node, metastasis (TNM) classification, was performed. In addition, sections from ADC tissue and normal tissue adjacent to tumors were stained with an anti-CHRNA3 (cholinergic receptor nicotinic α3) antibody by immunohistochemistry in 81 cases. Our results demonstrate that rs8042374, a variant of the CHRNA3 gene, is associated with an increased risk of ADC with an OR of 1.76 (95% CI: 1.17-2.65, p=0.024). This variant was linked to a greater risk of ADC in female nonsmokers (OR (95% CI): 1.81 (1.05-3.12), p=0.032) and female stage I+II cases (OR (95% CI): 1.92 (1.03-3.57), p=0.039). Although located within the same gene, rs938682 showed protective effects for smokers, stage III+IV cases, and male stage III+IV cases. Additionally, the CHRNA3 protein level in ADC tissue was slightly higher than in the surrounding normal lung tissue, based on immunohistochemical analysis. Our results suggest that the CHRNA3 polymorphism functions as a genetic modifier of the risk of developing lung ADC in the Chinese population, particularly in nonsmoking females.


An Exploratory Study on the Stable Radiomics Features of Metastatic Small Pulmonary Nodules in Colorectal Cancer Patients.

  • Caiyin Liu‎ et al.
  • Frontiers in oncology‎
  • 2021‎

To identify the relatively invariable radiomics features as essential characteristics during the growth process of metastatic pulmonary nodules with a diameter of 1 cm or smaller from colorectal cancer (CRC).


MAP kinase-interacting serine/threonine kinase 2 promotes proliferation, metastasis, and predicts poor prognosis in non-small cell lung cancer.

  • Zhihua Guo‎ et al.
  • Scientific reports‎
  • 2017‎

We hypothesized that MAP kinase-interacting serine/threonine kinase 2 (MNK2) may contribute to non-small cell lung cancer (NSCLC) development, and serve as a new therapeutic target. Immunohistochemical staining evaluated the correlation between MNK2 expression and clinicopathological features in 367 NSCLC cancer tissues. We determined the effects of MNK2 silencing in NSCLC cell lines in vitro and in vivo. RT-PCR and western blotting was used to examine the impact of MNK2 on ERK and AKT pathways. MNK2 was overexpressed in NSCLC cell lines and tumor tissues. Patients with MNK2 overexpression had lower OS rates (P < 0.001). High expression of MNK2 was correlated with lymph node metastasis (P = 0.008). MNK2 functioned as an independent prognostic factor for poor survival in patients with NSCLC (P = 0.003). MNK2 down-regulation inhibited proliferation, migration and invasion in vitro (P < 0.001), and reduced tumor growth and invasion in nude mice (P < 0.05). MNK2 enhanced phosphorylation of eIF4E, a downstream target of ERK and AKT pathways, which promoted NSCLC proliferation and invasion. We conclude that MNK2 overexpression in NSCLC is associated with proliferation, migration, invasion, and lower survival rates in patients via the phosphorylated eIF4E-mediated signaling pathway.


Radiation Can Regulate the Expression of miRNAs Associated with Osteogenesis and Oxidation in Exosomes from Peripheral Blood Plasma.

  • Yu Du‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2021‎

Radiotherapy is a common therapy in head and neck tumors, which may cause a side effect radiation bone injury (RBI). Furthermore, it has been investigated that microRNA (miRNA) expression levels were altered after radiotherapy. Exosomes play a role in bone formation as miRNA containers, while radiation affects exosomes composition, secretion, and function. So, our objective is to explore changes in miRNA levels during bone formation after radiotherapy and identify the differentially expressed miRNAs (DE-miRs) in plasma exosomes during the process of osteogenesis related to irradiation.


CircRNAs in BALF exosomes and plasma as diagnostic biomarkers in patients with acute respiratory distress syndrome caused by severe pneumonia.

  • He Sun‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2023‎

The transcriptomic studies targeting circular RNAs (circRNAs) in bronchoalveolar lavage fluid (BALF) exosomes of acute respiratory distress syndrome (ARDS) patients caused by severe pneumonia have rarely been reported. This study aimed to screen and validate abnormally expressed circRNAs in exosomes from BALF of patients with ARDS caused by severe pneumonia and then evaluate the diagnostic values of these circRNAs for ARDS.


Comparison of detection methods and follow-up study on the tyrosine kinase inhibitors therapy in non-small cell lung cancer patients with ROS1 fusion rearrangement.

  • Jieyu Wu‎ et al.
  • BMC cancer‎
  • 2016‎

The screening of ROS proto-oncogene 1, receptor tyrosine kinase(ROS1) fusion rearrangement might be potentially beneficial for an effective therapy against non-small cell lung cancer (NSCLC). However, the three main ROS1 rearrangement detection methods have limitations, and no routine protocol for the detection of ROS1 rearrangement in NSCLC is available. In this study, our aims were to compare immunohistochemistry (IHC), fluorescent in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (qRT-PCR) in their ability to detect ROS1 rearrangement in NSCLC, and discuss the clinical characteristics and histopathology of the patients with ROS1 rearrangement. Moreover, the effects of tyrosine kinase inhibitors (TKIs) therapy on the patients with ROS1 rearrangement and advanced stage disease (III b-IV) were investigated.


Enforced expression of miR-125b attenuates LPS-induced acute lung injury.

  • Zhongliang Guo‎ et al.
  • Immunology letters‎
  • 2014‎

The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) in humans, is a leading cause of morbidity and mortality in critically ill patients. Despite decades of research, few therapeutic strategies for clinical ARDS have emerged. Recent evidence implicated a potential role of miR-125b in development of ALI. Here we evaluated the miR-125b-based strategy in treatment of ARDS using the murine model of lipopolysaccharide (LPS)-induced ALI. We found that up-regulation of miR-125b expression maintained the body weight and survival of ALI mice, and significantly reduced LPS-induced pulmonary inflammation as reflected by reductions in total cell and neutrophil counts, proinflammatory cytokines, as well as chemokines in BAL fluid. Further, enforced expression of miR-125b resulted in remarkable reversal of LPS-induced increases in lung permeability as assessed by reductions in total protein, albumin and IgM in BAL fluid, and ameliorated the histopathology changes of lung in LPS-induced ALI mice. Of interest, serum miR-125b expression was also decreased and inversely correlated with the disease severity in patients with ARDS. Our findings strongly demonstrated that enforced expression of miR-125b could effectively ameliorate the LPS-induced ALI, suggesting a potential application for miR-125b-based therapy to treat clinical ARDS.


Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas.

  • Kui Wu‎ et al.
  • Nature communications‎
  • 2015‎

The landscape of genetic alterations in lung adenocarcinoma derived from Asian patients is largely uncharacterized. Here we present an integrated genomic and transcriptomic analysis of 335 primary lung adenocarcinomas and 35 corresponding lymph node metastases from Chinese patients. Altogether 13 significantly mutated genes are identified, including the most commonly mutated gene TP53 and novel mutation targets such as RHPN2, GLI3 and MRC2. TP53 mutations are furthermore significantly enriched in tumours from patients harbouring metastases. Genes regulating cytoskeleton remodelling processes are also frequently altered, especially in metastatic samples, of which the high expression level of IQGAP3 is identified as a marker for poor prognosis. Our study represents the first large-scale sequencing effort on lung adenocarcinoma in Asian patients and provides a comprehensive mutational landscape for both primary and metastatic tumours. This may thus form a basis for personalized medical care and shed light on the molecular pathogenesis of metastatic lung adenocarcinoma.


IL-33 blockade suppresses tumor growth of human lung cancer through direct and indirect pathways in a preclinical model.

  • Kailing Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Non-small-cell lung cancer (NSCLC) is the most common type in lung cancer, a leading cause of cancer-related death worldwide. Our previous study unraveled a pro-cancer function of IL-33 in fueling outgrowth and metastasis of human NSCLC cells. Herein, we determined that interfere with IL-33 activity was an effective strategy for limiting NSCLC tumor growth using a preclinical model with human NSCLC xenografts. IL-33 blockade efficiently inhibited tumor growth of NSCLC xenografts in immune-deficient mice. Mechanistically, IL-33 blockade suppressed outgrowth capacity of human NSCLC cells. Meanwhile, IL-33 blockade abrogated polarization of M2 tumor-associated macrophages (TAMs) and reduced accumulation of regulatory T cells (Tregs) in tumor microenvironments, shaping functional immune surveillance. In NSCLC patients, IL-33 expressions were positively correlated with Ki-67 proliferation index and expressions of M2 TAM- and Teg-related genes. These findings identify IL-33 as a dual-functional factor in NSCLC pathogenesis and suggest IL-33 blockade as a promising therapeutic for NSCLC patients.


SQSTM1/p62 Controls mtDNA Expression and Participates in Mitochondrial Energetic Adaption via MRPL12.

  • Yuan Ma‎ et al.
  • iScience‎
  • 2020‎

Mitochondrial DNA (mtDNA) encodes thirteen core components of OXPHOS complexes, and its steady expression is crucial for cellular energy homeostasis. However, the regulation of mtDNA expression machinery, along with its sensing mechanism to energetic stresses, is not fully understood. Here, we identified SQSTM1/p62 as an important regulator of mtDNA expression machinery, which could effectively induce mtDNA expression and the effects were mediated by p38-dependent upregulation of mitochondrial ribosomal protein L12 (MRPL12) in renal tubular epithelial cells (TECs), a highly energy-demanding cell type related to OXPHOS. We further identified a direct binding site within the MRPL12 promoter to ATF2, the downstream effector of p38. Besides, SQSTM1/p62-induced mtDNA expression is involved in both serum deprivation and hypoxia-induced mitochondrial response, which was further highlighted by kidney injury phenotype of TECs-specific SQSTM1/p62 knockout mice. Collectively, these data suggest that SQSTM1/p62 is a key regulator and energetic sensor of mtDNA expression machinery.


Adipose tissue macrophage-derived exosomal miR-210-5p in modulating insulin sensitivity in rats born small for gestational age with catch-up growth.

  • Hui Xiong‎ et al.
  • Translational pediatrics‎
  • 2023‎

Insulin resistance has been implicated in the pathogenesis of children born small for gestational age (SGA) with catch-up growth (CUG). Adipose tissue macrophages (ATMs) regulate insulin resistance by secreting exosomes containing microRNA (miRNA) cargo; however, their pathogenic roles and molecular mechanism are not fully understood. This study aimed to investigate the role of miR-210-5p in rats born SGA with CUG and insulin resistance.


Transcription of MRPL12 regulated by Nrf2 contributes to the mitochondrial dysfunction in diabetic kidney disease.

  • Xia Gu‎ et al.
  • Free radical biology & medicine‎
  • 2021‎

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Increasing evidences suggested that DKD correlates more closely to mitochondrial dysfunction than to hyperglycemia. Our previous study has reported that mitochondrial ribosomal protein L7/L12 (MRPL12) could positively control the mitochondrial oxidative phosphorylation (OXPHOS) and mtDNA copy number. The present study further investigated the role of MRPL12 in mitochondrial dysfunction of DKD. Using a mass spectrometry-based proteomics and immunohistochemistry, we found that MRPL12 underwent significant decreases in diabetic kidneys. Moreover, decreased expression of MRPL12 was associated with reduced mitochondrial OXPHOS in proximal tubular epithelial cells (PTECs) and overexpression of MRPL12 could alleviated the impairment of OXPHOS induced by long term high glucose. We further explored the upstream mechanism and identified nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential transcription factor for MRPL12. Nrf2 changes consistently with MRPL12 in DKD and correlates with alterations of mitochondrial function, fibrosis and apoptosis of PTECs treated with high glucose challenge. Thus, the role of MRPL12 in the maintenance of mitochondrial function in DKD may be regulated by Nrf2, and provides new potential therapeutic targets for DKD.


A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma.

  • Di Shao‎ et al.
  • Scientific reports‎
  • 2016‎

Molecular profiling of lung cancer has become essential for prediction of an individual's response to targeted therapies. Next-generation sequencing (NGS) is a promising technique for routine diagnostics, but has not been sufficiently evaluated in terms of feasibility, reliability, cost and capacity with routine diagnostic formalin-fixed, paraffin-embedded (FFPE) materials. Here, we report the validation and application of a test based on Ion Proton technology for the rapid characterisation of single nucleotide variations (SNVs), short insertions and deletions (InDels), copy number variations (CNVs), and gene rearrangements in 145 genes with FFPE clinical specimens. The validation study, using 61 previously profiled clinical tumour samples, showed a concordance rate of 100% between results obtained by NGS and conventional test platforms. Analysis of tumour cell lines indicated reliable mutation detection in samples with 5% tumour content. Furthermore, application of the panel to 58 clinical cases, identified at least one actionable mutation in 43 cases, 1.4 times the number of actionable alterations detected by current diagnostic tests. We demonstrated that targeted NGS is a cost-effective and rapid platform to detect multiple mutations simultaneously in various genes with high reproducibility and sensitivity.


Vasoactive intestinal peptide stabilizes intestinal immune homeostasis through maintaining interleukin-10 expression in regulatory B cells.

  • Xiong Sun‎ et al.
  • Theranostics‎
  • 2019‎

Rationale: Immune dysfunction is thought to play an important role in the pathogenesis of inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD). However, the underlying mechanism requires further investigation. Vasoactive intestinal peptide (VIP) has immune regulatory functions, but its role in immune regulatory activities in the intestinal mucosa is not fully understood. This study aims to elucidate the role of VIP in the regulation of regulatory B cell (Breg) function in the intestine. Methods: Peripheral blood samples were collected from UC patients and healthy control (HC) subjects. Bregs were isolated from these samples and their immune regulatory function was analyzed. A murine colitis model was established to test the role of VIP in inhibiting inflammation in the intestine. Results: Serum IL-10 and VIP levels were lower in IgE+ (≥0.35 IU/mL) UC patients than that in HC subjects. The immune suppressive function of Bregs isolated from IgE+ UC patients was impaired. IL-10 mRNA decayed spontaneously in Bregs, which was reversed by VIP added to the culture. Tristetraprolin (TTP) bound IL-10 mRNA to speed its decay, which was blocked by VIP in the culture. Administration of VIP efficiently inhibited experimental colitis. Conclusions: Insufficient VIP levels in the microenvironment speeds IL-10 mRNA decay to cause Breg dysfunction. Administration of VIP can inhibit experimental colitis, suggesting the translational potential of VIP in the treatment of IgE+ UC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: