Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,022 papers

Overexpression of WDR79 in non-small cell lung cancer is linked to tumour progression.

  • Yang Sun‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2016‎

WD-repeat protein 79 (WDR79), a member of the WD-repeat protein family, acts as a scaffold protein, participating in telomerase assembly, Cajal body formation and DNA double-strand break repair. Here, we first report that WDR79 is frequently overexpressed in cell lines and tissues derived from non-small cell lung cancer (NSCLC). Knockdown of WDR79 significantly inhibited the proliferation of NSCLC cells in vitro and in vivo by inducing cell cycle arrest and apoptosis. WD-repeat protein 79 -induced cell cycle arrest at the G0/G1 phase was associated with the expression of G0/G1-related cyclins and cyclin-dependent kinase complexes. We also provide evidence that WDR79 knockdown induces apoptosis via a mitochondrial pathway. Collectively, these results suggest that WDR79 is involved in the tumorigenesis of NSCLC and is a potential novel diagnostic marker and therapeutic target for NSCLC.


Mutually exclusive mutations in NOTCH1 and PIK3CA associated with clinical prognosis and chemotherapy responses of esophageal squamous cell carcinoma in China.

  • Bin Song‎ et al.
  • Oncotarget‎
  • 2016‎

Recurrent genetic abnormalities that correlate with clinical features could be used to determine patients' prognosis, select treatments and predict responses to therapy. Esophageal squamous cell carcinoma (ESCC) contains genomic alterations of undefined clinical significance. We aimed to identify mutually exclusive mutations that are frequently detected in ESCCs and characterized their associations with clinical variables.


LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain.

  • Yixuan Wang‎ et al.
  • Nature communications‎
  • 2016‎

Epigenetic regulatory complexes play key roles in the modulation of transcriptional regulation underlying neural stem cell (NSC) proliferation and progeny specification. How specific cofactors guide histone demethylase LSD1/KDM1A complex to regulate distinct NSC-related gene activation and repression in cortical neurogenesis remains unclear. Here we demonstrate that Rcor2, a co-repressor of LSD1, is mainly expressed in the central nervous system (CNS) and plays a key role in epigenetic regulation of cortical development. Depletion of Rcor2 results in reduced NPC proliferation, neuron population, neocortex thickness and brain size. We find that Rcor2 directly targets Dlx2 and Shh, and represses their expressions in developing neocortex. In addition, inhibition of Shh signals rescues the neurogenesis defects caused by Rcor2 depletion both in vivo and in vitro. Hence, our findings suggest that co-repressor Rcor2 is critical for cortical development by repressing Shh signalling pathway in dorsal telencephalon.


Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism.

  • Xin Guan‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Human adipose-derived stem cells (hADSCs), widely present in the adult human body, are an emerging and attractive tool for the establishment of stem cell-based therapies for the treatment of liver disease. However, the mechanism underlying hADSCs hepatic differentiation remains to be elucidated. Caveolin-1 (Cav-1), a 21-24 kDa membrane structural protein, is important in liver regeneration and development. In the present study, fluorescence immunocytochemistry and western blotting were used to analyze the expression levels of Cav-1 and evaluate its effects on the hepatic differentiation of hADSCs. The results revealed that primary hADSCs preserved the ability to proliferate and differentiate into hepatocyte-like cells. As demonstrated by semiquantitative reverse transcription-polymerase chain reaction, hepatocyte-inducing factors significantly increased the expression of Cav-1 in a time-dependent manner, as indicated by increased expression levels of the albumin (ALB) and α-fetoprotein (AFP) markers. In addition the expression levels of ALB and HNF1A significantly decreased following small interfering RNA-mediated knockdown of Cav-1. The mitogen-activated protein kinase (MAPK) signaling pathway was activated during hepatic differentiation and inhibited following Cav-1 knockdown. These results suggested that Cav-1 may regulate the hepatocyte-like differentiation of hADSCs by modulating mitogen-activated protein kinase kinase/MAPK signaling. The results of the present study will provide experimental and theoretical basis for further clinical studies on stem cell transplantation in the treatment of liver disease.


Low expression of spindle checkpoint protein, Cenp-E, causes numerical chromosomal abnormalities in HepG-2 human hepatoma cells.

  • Bin Liu‎ et al.
  • Oncology letters‎
  • 2015‎

The aim of the present study was to investigate the expression, localization and role of centromere-associated protein E (Cenp-E) in hepatoma cells. The Cenp-E mRNA expression levels in the HepG-2 human hepatocellular carcinoma and LO2 normal hepatic cell lines following treatment with nocodazole were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Furthermore, the localization and expression of Cenp-E protein in the two cell types was visualized using indirect immunofluorescence. RT-qPCR was also performed to detect the Cenp-E mRNA expression levels in LO2 cells before and after RNA interference. Additional evaluation of the function of interfered cells was performed using indirect immunofluorescence. The results of RT-qPCR demonstrated that the protein expression levels of Cenp-E in the two cell lines prior to treatment with nocodazole were not significantly different (P>0.05). However, the upregulation of Cenp-E expression levels in the LO2 cells was significantly higher compared with that in the HepG-2 cells during cell division (P<0.05). Indirect immunofluorescence analysis indicated that the Cenp-E protein was predominantly located in the nucleus, and that Cenp-E protein expression in nuclei with abnormal mitosis was markedly lower compared with that in nuclei exhibiting normal mitosis. Indirect immunofluorescence also determined that the ratio of dyskaryosis was significantly higher in cells that had undergone Cenp-E interference compared with normal cells. Thus, the present study indicated that the low expression of Cenp-E mRNA may be an important reason for numerical chromosomal abnormalities in human hepatoma cells.


Ectodomain Architecture Affects Sequence and Functional Evolution of Vertebrate Toll-like Receptors.

  • Jinlan Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Toll-like receptors (TLRs) are crucial components of innate immunity that specifically recognize diverse pathogen-associated molecular patterns from pathogens. The continuous hydrogen-bond network (asparagine ladder) formed among the asparagine residues on the concave surfaces of neighboring leucine-rich repeat modules assists in stabilizing the overall shape of TLR ectodomains responsible for ligand recognition. Analysis of 28 types of vertebrate TLRs showed that their ectodomains possessed three types of architectures: a single-domain architecture with an intact asparagine ladder, a three-domain architecture with the ladder interrupted in the middle, and a trans-three-domain architecture with the ladder broken in both termini. Based on a phylogenetic analysis, the three vertebrate TLR architectures arose during early evolution. The 1428 vertebrate TLRs can be divided into eight families based on sequence and structural differences. TLRs ligand specificities are affected by their ectodomain architectures. Three-domain TLRs bind hydrophobic ligands, whereas single-domain and trans-three-domain TLRs mainly recognize hydrophilic ligands. Analysis of 39 vertebrate genomes suggested that the number of single-domain TLR genes in terrestrial vertebrate genomes decreased by half compared to aquatic vertebrate genomes. Single-domain TLR genes underwent stronger purifying selective pressures than three-domain TLR genes in mammals. Overall, ectodomain architecture influences the sequence and functional evolution of vertebrate TLRs.


Epigenetic Silencing of Eyes Absent 4 Gene by Acute Myeloid Leukemia 1-Eight-twenty-one Oncoprotein Contributes to Leukemogenesis in t(8;21) Acute Myeloid Leukemia.

  • Sai Huang‎ et al.
  • Chinese medical journal‎
  • 2016‎

The acute myeloid leukemia 1 (AML1)-eight-twenty-one (ETO) fusion protein generated by the t(8;21)(q22;q22) translocation is considered to display a crucial role in leukemogenesis in AML. By focusing on the anti-leukemia effects of eyes absent 4 (EYA4) gene on AML cells, we investigated the biologic and molecular mechanism associated with AML1-ETO expressed in t(8;21) AML.


How Strong Is the Evidence for Sodium Bicarbonate to Prevent Contrast-Induced Acute Kidney Injury After Coronary Angiography and Percutaneous Coronary Intervention?

  • Yuhao Dong‎ et al.
  • Medicine‎
  • 2016‎

Hydration with sodium bicarbonate is one of the strategies to prevent contrast-induced acute kidney injury (CI-AKI). The purpose of this study was to determine how strong is the evidence for sodium bicarbonate to prevent CI-AKI after coronary angiography (CAG) and/or percutaneous coronary intervention (PCI).We conducted PubMed, EMBASE, and CENTRAL databases to search for randomized controlled trials (RCTs) comparing the efficacy of sodium bicarbonate with sodium chloride to prevent CI-AKI after CAG and/or PCI. Relative risk (RR), standardized mean difference (SMD), or weighted mean difference (WMD) with 95% confidence intervals (CIs) was calculated. Heterogeneity, publication bias, and study quality were evaluated, sensitivity analyses, cumulative analyses, and subgroup analyses were performed. The risk of random errors was assessed by trial sequential analysis (TSA).Sixteen RCTs (3537 patients) met the eligibility criteria. Hydration with sodium bicarbonate showed significant beneficial effects in preventing CI-AKI (RR 0.67; 95% CI: 0.47-0.96, P = 0.029), decreasing the change in serum creatinine (SCr) (SMD -0.31 95% CI: -0.55 to -0.07, P = 0.011) and estimated glomerular filtration rate (eGFR) (SMD -0.17 95% CI: -0.30 to -0.04, P = 0.013). But no significant differences were observed in the requirement for dialysis (RR 1.11; 95% CI: 0.60-2.07, P = 0.729), mortality (RR 0.71; 95% CI: 0.41-1.21, P = 0.204) and reducing the length of hospital stay (LHS) (WMD -1.47; 95% CI: -4.14 to 1.20, P = 0.279). The result of TSA on incidence of CI-AKI showed the required information size (RIS = 6614) was not reached and cumulative z curve did not cross TSA boundary. The result of TSA on the requirement for dialysis and mortality demonstrated the required information sizes (RIS = 170,510 and 19,516, respectively) were not reached, and the cumulative z-curve did not cross any boundaries.The evidence that sodium bicarbonate reduces the incidence of CI-AKI is encouraging but more well-designed randomized controlled trails are required to allow definitive firm conclusion to be drawn.


Leukemia Stem Cell-Released Microvesicles Promote the Survival and Migration of Myeloid Leukemia Cells and These Effects Can Be Inhibited by MicroRNA34a Overexpression.

  • Yue Wang‎ et al.
  • Stem cells international‎
  • 2016‎

Leukemia stem cells (LSCs) play the major role in relapse of acute myeloid leukemia (AML). Recent evidence indicates that microvesicles (MVs) released from cancer stem cells can promote tumor growth and invasion. In this study, we investigated whether LSCs-released MVs (LMVs) can regulate the malignance of AML cells and whether overexpression of tumor suppressive microRNA (miR), miR34a, is able to interrupt this process. LSCs were transfected with miRNA control (miRCtrl) or miR34a mimic for producing LMVs, respectively, defined as LMVs(miRCtrl) and LMVs(miR34a). The effect of miR34a transfection on LSC proliferation and the effects of LMVs(miRCtrl) or LMVs(miR34a) on the proliferation, migration, and apoptosis of AML cells (after LSC depletion) were determined. The levels of miR34a targets, caspase-3 and T cell immunoglobulin mucin-3 (Tim-3), were analyzed. Results showed that (1) LMVs(miRCtrl) promoted proliferation and migration and inhibited apoptosis of AML cells, which were associated with miR34a deficit; (2) transfection of miR34a mimic inhibited LSC proliferation and increased miR34a level in LMVs(miR34a); (3) LMVs(miR34a) produced opposite effects as compared with LMVs(miRCtrl), which were associated with the changes of caspase-3 and Tim-3 levels. In summary, LMVs support AML cell malignance and modulating miR34a could offer a new approach for the management of AML.


ZSTK474, a specific class I phosphatidylinositol 3-kinase inhibitor, induces G1 arrest and autophagy in human breast cancer MCF-7 cells.

  • Yaochen Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Multifaceted activities of class I phosphatidylinositol 3-kinase (PI3K) inhibitor ZSTK474 were investigated on human breast cancer cell MCF-7. ZSTK474 inhibited proliferation of MCF-7 cells potently. Flow cytometric analysis indicated that ZSTK474 induced cell cycle arrest at G1 phase, but no obvious apoptosis occurred. Western blot analysis suggested that blockade of PI3K/Akt/GSK-3β/cyclin D1/p-Rb pathway might contribute to the G1 arrest induced. Moreover, we demonstrated that ZSTK474 induced autophagy in MCF-7 cells by use of various assays including monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), tandem mRFP-GFP-LC3 fluorescence microscopy, and western blot detection of the autophagy protein markers of LC3B II, p62 and Atg 5. Inhibition of class I PI3K and the downstream mTOR might be involved in the autophagy-inducing effect. Combinational use of ZSTK474 and autophagy inhibitors enhanced cell viability, suggesting ZSTK474-induced autophagy might contribute to the antitumor activity. Our report supports the application of ZSTK474, which is being evaluated in clinical trials, for breast cancer therapy.


Selection and characterization of DNA aptamer for metastatic prostate cancer recognition and tissue imaging.

  • Minlan Duan‎ et al.
  • Oncotarget‎
  • 2016‎

Prostate cancer (PCa) is the second leading cause of death and most prevalent cancer in men. The absence of curative options for castration-resistant metastatic prostate cancer and biomarkers able to discriminate between indolent and aggressive tumors contribute to these statistics. In this study, a DNA aptamer termed DML-7 was successfully selected against human PCa cell line DU145 by using the cell-based systematic evolution of ligands by exponential enrichment (SELEX) method. The selected aptamer DML-7 was found to internalize into target cells in a temperature-dependent manner and exhibit high binding affinity for target cells with dissociation constants in the nanomolar range. Binding analysis further revealed that DML-7 only binds to DU145 and PC-3 cells with metastatic potential, but not to LNCaP or 22Rv1 cells with low or nonmetastatic potential, demonstrating that DML-7 has excellent selectivity for the recognition of the metastatic PCa cells. Clinical tissue imaging further confirmed these results. Therefore, both high binding affinity and specificity to metastatic PCa cells and tissues afford DML-7 with the potential for development into a novel tool for diagnosis and targeted drug delivery against metastatic prostate cancer.


L-proline: a highly effective cryoprotectant for mouse oocyte vitrification.

  • Lu Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Recent studies have shown that L-proline is a natural osmoprotectant and an antioxidant to protect cells from injuries such as that caused by freezing and thawing in many species including plant, ram sperm and human endothelial cells. Nevertheless, this nontoxic cryoprotectant has not yet been applied to mammalian oocyte vitrification. In this study we evaluated the efficiency and safety of the new cryoprotectant in oocyte vitrification. The results indicated that L-proline improves the survival rate of vitrified oocytes, protects mitochondrial functions and could be applied as a new cryoprotectant in mouse oocyte vitrification.


Natural Killer-like B Cells Prime Innate Lymphocytes against Microbial Infection.

  • Shuo Wang‎ et al.
  • Immunity‎
  • 2016‎

Natural killer (NK) cells and non-cytotoxic interferon-γ (IFN-γ)-producing group I innate lymphoid cells (ILC1s) produce large amounts of IFN-γ and cause activation of innate and adaptive immunity. However, how NKs and ILC1s are primed during infection remains elusive. Here we have shown that a lymphocyte subpopulation natural killer-like B (NKB) cells existed in spleen and mesenteric lymph nodes (MLNs). NKBs had unique features that differed from T and B cells, and produced interleukin-18 (IL-18) and IL-12 at an early phase of infection. NKB cells played a critical role in eradication of microbial infection via secretion of IL-18 and IL-12. Moreover, IL-18 deficiency abrogated the antibacterial effect of NKBs. Upon bacterial challenge, NKB precursors (NKBPs) rapidly differentiated to NKBs that activated NKs and ILC1s against microbial infection. Our findings suggest that NKBs might be exploited to develop effective therapies for treatment of infectious diseases.


Cryobiological Characteristics of L-proline in Mammalian Oocyte Cryopreservation.

  • Lu Zhang‎ et al.
  • Chinese medical journal‎
  • 2016‎

L-proline is a natural, nontoxic cryoprotectant that helps cells and tissues to tolerate freezing in a variety of plants and animals. The use of L-proline in mammalian oocyte cryopreservation is rare. In this study, we explored the cryobiological characteristics of L-proline and evaluated its protective effect in mouse oocyte cryopreservation.


MiR-143 enhances the antitumor activity of shikonin by targeting BAG3 expression in human glioblastoma stem cells.

  • Jing Liu‎ et al.
  • Biochemical and biophysical research communications‎

Therapeutic applications of microRNAs (miRNAs) in chemotherapy were confirmed to be valuable, but there is rare to identify their specific roles and functions in shikonin treatment toward tumors. Here, for the first time, we reported that miR-143 played a critical role in the antitumor activity of shikonin in glioblastoma stem cells (GSCs). The results showed that the expression of miR-143 was downregulated in shikonin treated GSCs within 24 h. MiR-143 overexpression significantly enhanced the inhibitory effect of shikonin toward GSCs on cell viability. Besides, miR-143 overexpression caused a significant increase in the apoptotic fraction and made apoptosis occur earlier. Further investigation identified that BAG3, an apoptotic regulator, was a functional target of miR-143 in shikonin treated GSCs. The expression of BAG3 was upregulated in shikonin treated GSCs within 24 h. MiR-143 overexpression significantly reversed the high expression of BAG3 in shikonin treated GSCs. Moreover, it was confirmed that the enhanced cytotoxicity of shikonin by miR-143 overexpression was reversed by BAG3 overexpression both in vitro and in vivo, suggesting that the enhanced tumor suppressive effects by miR-143 overexpression was at least partly through the regulation of BAG3. Taken together, for the first time, our results demonstrate that miR-143 could enhance the antitumor activity of shikonin toward GSCs through reducing BAG3 expression, which may provide a novel therapeutic strategy for enhancing the treatment efficacy of shikonin toward GSCs.


Genomic analyses reveal FAM84B and the NOTCH pathway are associated with the progression of esophageal squamous cell carcinoma.

  • Caixia Cheng‎ et al.
  • GigaScience‎
  • 2016‎

Esophageal squamous cell carcinoma (ESCC) is the sixth most lethal cancer worldwide and the fourth most lethal cancer in China. Genomic characterization of tumors, particularly those of different stages, is likely to reveal additional oncogenic mechanisms. Although copy number alterations and somatic point mutations associated with the development of ESCC have been identified by array-based technologies and genome-wide studies, the genomic characterization of ESCCs from different stages of the disease has not been explored. Here, we have performed either whole-genome sequencing or whole-exome sequencing on 51 stage I and 53 stage III ESCC patients to characterize the genomic alterations that occur during the various clinical stages of ESCC, and further validated these changes in 36 atypical hyperplasia samples.


Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform.

  • Tobias Wagner‎ et al.
  • Nucleic acids research‎
  • 2016‎

Epigenetic modifications of histone tails play an essential role in the regulation of eukaryotic transcription. Writer and eraser enzymes establish and maintain the epigenetic code by creating or removing posttranslational marks. Specific binding proteins, called readers, recognize the modifications and mediate epigenetic signalling. Here, we present a versatile assay platform for the investigation of the interaction between methyl lysine readers and their ligands. This can be utilized for the screening of small-molecule inhibitors of such protein-protein interactions and the detailed characterization of the inhibition. Our platform is constructed in a modular way consisting of orthogonal in vitro binding assays for ligand screening and verification of initial hits and biophysical, label-free techniques for further kinetic characterization of confirmed ligands. A stability assay for the investigation of target engagement in a cellular context complements the platform. We applied the complete evaluation chain to the Tudor domain containing protein Spindlin1 and established the in vitro test systems for the double Tudor domain of the histone demethylase JMJD2C. We finally conducted an exploratory screen for inhibitors of the interaction between Spindlin1 and H3K4me3 and identified A366 as the first nanomolar small-molecule ligand of a Tudor domain containing methyl lysine reader.


MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells.

  • Yang Liu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2016‎

Emerging evidence demonstrates that microRNAs (miRNAs) play an important role in regulation of cell growth, invasion and metastasis through inhibiting the expression of their targets. It has been reported that miR-130a-3p controls cell growth, migration and invasion in a variety of cancer cells. However, it is unclear whether miR-130a-3p regulates epithelial-mesenchymal transition (EMT) in drug resistant cancer cells. Therefore, in the current study, we explore the role and molecular mechanisms of miR-130a-3p in gemcitabine resistant (GR) hepatocellular carcinoma (HCC) cells.


Simultaneous inhibition of Vps34 kinase would enhance PI3Kδ inhibitor cytotoxicity in the B-cell malignancies.

  • Xiaochuan Liu‎ et al.
  • Oncotarget‎
  • 2016‎

PI3Kδ has been found to be over-expressed in B-Cell-related malignancies. Despite the clinical success of the first selective PI3Kδ inhibitor, CAL-101, inhibition of PI3Kδ itself did not show too much cytotoxic efficacy against cancer cells. One possible reason is that PI3Kδ inhibition induced autophagy that protects the cells from death. Since class III PI3K isoform PIK3C3/Vps34 participates in autophagy initiation and progression, we predicted that a PI3Kδ and Vps34 dual inhibitor might improve the anti-proliferative activity observed for PI3Kδ-targeted inhibitors. We discovered a highly potent ATP-competitive PI3Kδ/Vps34 dual inhibitor, PI3KD/V-IN-01, which displayed 10-1500 fold selectivity over other PI3K isoforms and did not inhibit any other kinases in the kinome. In cells, PI3KD/V-IN-01 showed 30-300 fold selectivity between PI3Kδ and other class I PI3K isoforms. PI3KD/V-IN-01 exhibited better anti-proliferative activity against AML, CLL and Burkitt lymphoma cell lines than known selective PI3Kδ and Vps34 inhibitors. Interestingly, we observed FLT3-ITD AML cells are more sensitive to PI3KD/V-IN-01 than the FLT3 wt expressing cells. In AML cell inoculated xenograft mouse model, PI3KD/V-IN-01 exhibited dose-dependent anti-tumor growth efficacies. These results suggest that dual inhibition of PI3Kδ and Vps34 might be a useful approach to improve the PI3Kδ inhibitor's anti-tumor efficacy.


Effect of Endomorphins on HUVECs Treated by ox-LDL and Its Related Mechanisms.

  • Juan Zhao‎ et al.
  • Journal of diabetes research‎
  • 2016‎

We found in the present study that treatment with ox-LDL decreased the cell viability and the content of nitric oxide (NO) and the activity of nitric oxide synthase (NOS) as well as eNOS mRNA expression, while increasing the mRNA expression and content of endothelin-1 (ET-1) in human umbilical vein endothelial cells (HUVECs). However, endomorphins EM1/EM2 increased the cell viability and the content of NO and the activity of NOS as well as eNOS mRNA expression, while decreasing the mRNA expression and content of ET-1 compared with ox-LDL alone. Meanwhile, the expressions of JNK and p-JNK were enhanced by ox-LDL while being suppressed by EM1/EM2. The results suggested that EM1 and EM2 can correct the endothelial cell dysfunction induced by ox-LDL and the protective effect may be achieved by affecting the JNK pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: