Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Pin1 Is Involved in HDAC6-mediated Cancer Cell Motility.

  • Hsiang-Hao Chuang‎ et al.
  • International journal of medical sciences‎
  • 2018‎

Histone deacetylase 6 (HDAC6), a member of the HDAC enzymes, has been reported to play substantial roles in many cellular processes. Evidence shows that deregulation of HDAC6 may be involved in the progression of some cancers, neurodegenerative diseases, and inflammatory disorders. However, little is known regarding the effect of post-translational modification of HDAC6 on cellular localization and biological functions. In the present study, we identified four phosphorylation sites on HDAC6 under normal conditions by mass spectrometry analysis. Two phosphorylation sites, pSer22 and pSer412, are recognized as Pin1 (peptidyl-prolyl cis/trans isomerase NIMA-interacting 1) substrates. Pin1 can interact with HDAC6 and be involved in HDAC6-mediated cell motility. Pin1 depletion abrogates HDAC6-induced cell migration and invasion in H1299 lung cancer cells. The findings of this study suggest that Pin1 might regulate HDAC6-mediated cell motility through alteration of protein conformation and function. Our results indicate the complexity of activity regulation between HDAC6 and Pin1, expanding knowledge regarding the multifunctional roles of Pin1 in tumorigenesis and cancer progression.


Perampanel reduces paroxysmal depolarizing shift and inhibitory synaptic input in excitatory neurons to inhibit epileptic network oscillations.

  • Ya-Chin Yang‎ et al.
  • British journal of pharmacology‎
  • 2020‎

Perampanel is a newly approved anticonvulsant uniquely targeting AMPA receptors, which mediate the most abundant form of excitatory synaptic transmission in the brain. However, the network mechanism underlying the anti-epileptic effect of the AMPAergic inhibition remains to be explored.


Pre-synaptic and post-synaptic A-type K+ channels regulate glutamatergic transmission and switching of the network into epileptiform oscillations.

  • Guan-Hsun Wang‎ et al.
  • British journal of pharmacology‎
  • 2022‎

Anticonvulsants targeting K+ channels have not been clinically available, although neuronal hyperexcitability in seizures could be suppressed by activation of K+ channels. Voltage-gated A-type K+ channel (A-channel) inhibitors may be prescribed for diseases of neuromuscular junction but could cause seizures. Consistently, genetic loss of function of A-channels may also cause seizures. It is unclear why inhibition of A-channels, compared with other types of K+ channels, is particularly prone to seizure induction. This hinders the development of relevant therapeutic interventions.


Delta-Frequency Augmentation and Synchronization in Seizure Discharges and Telencephalic Transmission.

  • Ping Chou‎ et al.
  • iScience‎
  • 2020‎

Epileptic seizures constitute a common neurological disease primarily diagnosed by characteristic rhythms or waves in the local field potentials (LFPs) of cerebral cortices or electroencephalograms. With a basolateral amygdala (BLA) kindling model, we found that the dominant frequency of BLA oscillations is in the delta range (1-5 Hz) in both normal and seizure conditions. Multi-unit discharges are increased with higher seizure staging but remain phase-locked to the delta waves in LFPs. Also, the change in synchrony precedes and outlasts the changes in discharging units as well as behavioral seizures. One short train of stimuli readily drives the pyramidal-inhibitory neuronal networks in BLA slices into prolonged reverberating activities, where the burst and interburst intervals may concurrently set a "natural wavelength" for delta frequencies. Seizures thus could be viewed as erroneous temporospatial continuums to normal oscillations in a system with a built-in synchronizing and resonating nature for information relay.


Conveyance of cortical pacing for parkinsonian tremor-like hyperkinetic behavior by subthalamic dysrhythmia.

  • Chen-Syuan Huang‎ et al.
  • Cell reports‎
  • 2021‎

Parkinson's disease is characterized by both hypokinetic and hyperkinetic symptoms. While increased subthalamic burst discharges have a direct causal relationship with the hypokinetic manifestations (e.g., rigidity and bradykinesia), the origin of the hyperkinetic symptoms (e.g., resting tremor and propulsive gait) has remained obscure. Neuronal burst discharges are presumed to be autonomous or less responsive to synaptic input, thereby interrupting the information flow. We, however, demonstrate that subthalamic burst discharges are dependent on cortical glutamatergic synaptic input, which is enhanced by A-type K+ channel inhibition. Excessive top-down-triggered subthalamic burst discharges then drive highly correlative activities bottom-up in the motor cortices and skeletal muscles. This leads to hyperkinetic behaviors such as tremors, which are effectively ameliorated by inhibition of cortico-subthalamic AMPAergic synaptic transmission. We conclude that subthalamic burst discharges play an imperative role in cortico-subcortical information relay, and they critically contribute to the pathogenesis of both hypokinetic and hyperkinetic parkinsonian symptoms.


FAK Executes Anti-Senescence via Regulating EZH2 Signaling in Non-Small Cell Lung Cancer Cells.

  • Hsiang-Hao Chuang‎ et al.
  • Biomedicines‎
  • 2022‎

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase overexpressed in various cancer types that plays a critical role in tumor progression. Accumulating evidence suggests that targeting FAK, either alone or in combination with other agents, may serve as an effective therapeutic strategy for numerous cancers. In addition to retarding proliferation, metastasis, and angiogenesis, FAK inhibition triggers cellular senescence in lung cancer cells. However, the detailed mechanism remains enigmatic. In the present study, we found that FAK inhibition not only elicits DNA-damage signaling but also downregulates enhancer of zeste homolog 2 (EZH2) expression. The manipulation of FAK expression influences EZH2 expression and corresponding signaling in vitro. Immunohistochemistry shows that active FAK signaling corresponds with the activation of the EZH2-mediated signaling cascade in lung-cancer-cells-derived tumor tissues. We also found that ectopic EZH2 expression attenuates FAK-inhibition-induced cellular senescence in lung cancer cells. Our results identify EZH2 as a critical downstream effector of the FAK-mediated anti-senescence pathway. Targeting FAK-EZH2 axis-induced cellular senescence may represent a promising therapeutic strategy for restraining tumor growth.


Glutamate transmission rather than cellular pacemaking propels excitatory-inhibitory resonance for ictogenesis in amygdala.

  • Guan-Hsun Wang‎ et al.
  • Neurobiology of disease‎
  • 2021‎

Epileptic seizures are automatic, excessive, and synchronized neuronal activities originating from many brain regions especially the amygdala, the allocortices and neocortices. This may reflect a shared principle for network organization and signaling in these telencephalic structures. In theory, the automaticity of epileptic discharges may stem from spontaneously active "oscillator" neurons equipped with intrinsic pacemaking conductances, or from a group of synaptically-connected collaborating "resonator" neurons. In the basolateral amygdalar (BLA) network of pyramidal-inhibitory (PN-IN) neuronal resonators, we demonstrated that rhythmogenic currents are provided by glutamatergic rather than the classic intrinsic or cellular pacemaking conductances (namely the h currents). The excitatory output of glutamatergic neurons such as PNs presumably propels a novel network-based "relay burst mode" of discharges especially in INs, which precondition PNs into a state prone to burst discharges and thus further glutamate release. Also, selective activation of unilateral PNs, but never INs, readily drives bilateral BLA networks into reverberating discharges which are fully synchronized with the behavioral manifestations of seizures (e.g. muscle contractions). Seizures originating in BLA and/or the other structures with similar PN-IN networks thus could be viewed as glutamate-triggered erroneous network oscillations that are normally responsible for information relay.


Inhibition of FAK Signaling Elicits Lamin A/C-Associated Nuclear Deformity and Cellular Senescence.

  • Hsiang-Hao Chuang‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Focal adhesion kinase (FAK) is a non-receptor kinase that facilitates tumor aggressiveness. The effects of FAK inhibition include arresting proliferation, limiting metastasis, and inhibiting angiogenesis. PF-573228 is an ATP-competitive inhibitor of FAK. Treating lung cancer cells with PF-573228 resulted in FAK inactivation and changes in the expressions of lamin A/C and nuclear deformity. Since lamin A/C downregulation or deficiency was associated with cellular senescence, the senescence-associated β-galactosidase (SA-β-gal) assay was used to investigate whether PF-573228 treatment drove cellular senescence, which showed more SA-β-gal-positive cells in culture. p53 is known to play a pivotal role in mediating the progression of cellular senescence, and the PF-573228-treated lung cancer cells resulted in a higher p53 expression level. Subsequently, the FAK depletion in lung cancer cells was employed to confirm the role of FAK inhibition on cellular senescence. FAK depletion and pharmacological inhibition of lung cancer cells elicited similar patterns of cellular senescence, lamin A/C downregulation, and p53 upregulation, implying that FAK signaling is associated with the expression of p53 and the maintenance of lamin A/C levels to shape regular nuclear morphology and manage anti-senescence. Conversely, FAK inactivation led to p53 upregulation, disorganization of the nuclear matrix, and consequently cellular senescence. Our data suggest a new FAK signaling pathway, in that abolishing FAK signaling can activate the senescence program in cells. Triggering cellular senescence could be a new therapeutic approach to limit tumor growth.


Pin1 coordinates HDAC6 upregulation with cell migration in lung cancer cells.

  • Hsiang-Hao Chuang‎ et al.
  • International journal of medical sciences‎
  • 2020‎

Histone deacetylase 6 (HDAC6) controls many cellular processes via its catalyzing deacetylation of downstream substrates or interacting with its partner proteins. Dysregulation of HDAC6 signaling links to many diseases. Our previous study has been reported peptidyl-prolyl cis/trans isomerase, and NIMA-interacting 1 (Pin1) involving in HDAC6-mediated cell motility. To gain insight into precisely coordination of HDAC6 and Pin1 in cell migration, shRNA-mediated gene silencing and ectopic expression were applied to manipulate protein expression level to evaluate relationship between HDAC6 and Pin1 expression. Quantitative RT-PCR and the cycloheximide (CHX) chase assay resulted in HDAC6 expression is correlated with Pin1 level in H1299 cells. It hints that the Pin1 increases HDAC6 expression through increased transcripts and posttranslational stabilization. Furthermore, wound healing assay and transwell invasion assay evidenced the contribution of Pin1 on cell motility in H1299 cells. Our data suggest that Pin1 acts as an important regulator to manage HDAC6 expression for cell motility in lung cancer cells.


Lung Cancer Cell-Derived Secretome Mediates Paraneoplastic Inflammation and Fibrosis in Kidney in Mice.

  • Chi-Chih Hung‎ et al.
  • Cancers‎
  • 2020‎

Kidney failure is a possible but rare complication in lung cancer patients that may be caused by massive tumor lysis or a paraneoplastic effect. Clinical case reports have documented pathological characteristics of paraneoplastic syndrome in glomeruli, but are short of molecular details. When Lewis lung carcinoma 1 (LLC1) cells were implanted in mice lungs to establish lung cancer, renal failure was frequently observed two weeks post orthotopic xenograft. The high urinary albumin-to-creatinine ratio (ACR) was diagnosed as paraneoplastic nephrotic syndrome in those lung cancer mice. Profiling the secretome of the lung cancer cells revealed that the secretory proteins were potentially nephrotoxic. The nephrotoxicity of lung cancer-derived secretory proteins was tested by examining the pathogenic effects of 1 × 106, 2 × 106, and 5 × 106 LLC1 cell xenografts on the pathogenic progression in kidneys. Severe albuminuria was present in the mice that received 5 × 106 LLC1 cells implantation, whereas 106 cell and 2 × 106 cell-implanted mice have slightly increased albuminuria. Pathological examinations revealed that the glomeruli had capillary loop collapse, tumor antigen deposition in glomeruli, and renal intratubular casts. Since IL-6 and MCP-1 are pathologic markers of glomerulopathy, their distributions were examined in the kidneys of the lung cancer mice. Moderate to severe inflammation in the kidneys was correlated with increases in the number of cells implanted in the mice, which was reflected by renal IL-6 and MCP-1 levels, and urine ACR. TGF-β signaling-engaged renal fibrosis was validated in the lung cancer mice. These results indicated that lung cancer cells could provoke inflammation and activate renal fibrosis.


Ser1333 phosphorylation indicates ROCKI activation.

  • Hsiang-Hao Chuang‎ et al.
  • Journal of biomedical science‎
  • 2013‎

Two isoforms of Rho-associated protein kinase (ROCK), ROCKI and ROCKII, play a pivotal role in regulation of cytoskeleton and are involved in multiple cellular processes in mammalian cells. Knockout mice experiments have indicated that the functions of ROCKI and II are probably non-redundant in physiology. However, it is difficult to differentiate the activation status of ROCKI and ROCKII in biological samples. Previously, we have identified phosphorylation site of ROCKII at Ser1366 residue sensitive to ROCK inhibition. We further investigated the activity-dependent phosphorylation site in ROCKI to establish the reagents that can be used to detect their individual activation.


PDZ-RhoGEF ubiquitination by Cullin3-KLHL20 controls neurotrophin-induced neurite outgrowth.

  • Mei-Yao Lin‎ et al.
  • The Journal of cell biology‎
  • 2011‎

The induction of neurite outgrowth and arborization is critical for developmental and regenerative processes. In this paper, we report that the BTB-kelch protein KLHL20 promoted neurite outgrowth and arborization in hippocampal and cortical neurons through its interaction with Cullin3 to form a ubiquitin ligase complex. This complex targeted PDZ-Rho guanine nucleotide exchange factor (RhoGEF), a protein abundantly expressed in the brain, for ubiquitin-dependent proteolysis, thereby restricting RhoA activity and facilitating growth cone spreading and neurite outgrowth. Importantly, targeting PDZ-RhoGEF to KLHL20 required PDZ-RhoGEF phosphorylation by p38 mitogen-activated protein kinase. In response to p38-activating neurotrophins, such as brain-derived neurotrophic factor and neurotrophin-3, KLHL20-mediated PDZ-RhoGEF destruction was potentiated, leading to neurotrophin-induced neurite outgrowth. Our study identified a ubiquitin-dependent pathway that targets PDZ-RhoGEF destruction to facilitate neurite outgrowth and indicates a key role of this pathway in neurotrophin-induced neuronal morphogenesis.


9-O-Terpenyl-Substituted Berberrubine Derivatives Suppress Tumor Migration and Increase Anti-Human Non-Small-Cell Lung Cancer Activity.

  • Jia-Ming Chang‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Lung cancer is one of the most common cancers and the leading cause of death in humans worldwide. Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases and is often diagnosed at a late stage. Among patients with NSCLC, 50% die within 1 year after diagnosis. Even with clinical intervention, the 5-year survival rate is only approximately 20%. Therefore, the development of an advanced therapeutic strategy or novel agent is urgently required for treating NSCLC. Berberine exerts therapeutic activity toward NSCLC; therefore, its activity as an antitumor agent needs to be explored further. In this study, three terpenylated-bromide derivatives of berberrubine were synthesized and their anti-NSCLC activities were evaluated. Each derivative had higher anti-NSCLCs activity than berberrubine and berberine. Among them, 9-O-gernylberberrubine bromide (B4) and 9-O-farnesylberberrubine bromide (B5) showed greater growth inhibition, cell-cycle regulation, in vitro tumorigenesis suppression, and tumor migration reduction. In addition, some degree of apoptosis and autophagic flux blocking was noted in the cells under B4 and B5 treatments. Our study demonstrates that the berberrubine derivatives, B4 and B5, exhibit impressive anti-NSCLC activities and have potential for use as chemotherapeutic agents against NSCLC.


Antiarrhythmics cure brain arrhythmia: The imperativeness of subthalamic ERG K+ channels in parkinsonian discharges.

  • Chen-Syuan Huang‎ et al.
  • Science advances‎
  • 2017‎

ERG K+ channels have long been known to play a crucial role in shaping cardiac action potentials and, thus, appropriate heart rhythms. The functional role of ERG channels in the central nervous system, however, remains elusive. We demonstrated that ERG channels exist in subthalamic neurons and have similar gating characteristics to those in the heart. ERG channels contribute crucially not only to the setting of membrane potential and, consequently, the firing modes, but also to the configuration of burst discharges and, consequently, the firing frequency and automaticity of the subthalamic neurons. Moreover, modulation of subthalamic discharges via ERG channels effectively modulates locomotor behaviors. ERG channel inhibitors ameliorate parkinsonian symptoms, whereas enhancers render normal animals hypokinetic. Thus, ERG K+ channels could be vital to the regulation of both cardiac and neuronal rhythms and may constitute an important pathophysiological basis and pharmacotherapeutic target for the growing list of neurological disorders related to "brain arrhythmias."


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: