Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Transient elevation of adult hippocampal neurogenesis after dopamine depletion.

  • June-Hee Park‎ et al.
  • Experimental neurology‎
  • 2010‎

Degeneration of the midbrain dopaminergic neurons during Parkinson's disease (PD) may affect remote regions of the brain that are innervated by the projections of these neurons. The dentate gyrus (DG), a site of continuous production of new neurons in the adult hippocampus, receives dopaminergic inputs from the neurons of the substantia nigra (SN). Thus, depletion of the SN neurons during disease or in experimental settings may directly affect adult hippocampal neurogenesis. We show that experimental ablation of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydopyridine (MPTP) mouse model of PD results in a transient increase in cell division in the subgranular zone (SGZ) of the DG. This increase is evident for the amplifying neural progenitors and for their postmitotic progeny; our results also indicate that MPTP treatment affects division of the normally quiescent stem cells in the SGZ. We also show that l-DOPA, used in the clinical treatment of PD, while attenuating the MPTP-induced death of dopaminergic neurons, does not alter the effect of MPTP on cell division in the DG. Our results suggest that a decrease in dopaminergic signaling in the hippocampus leads to a transient activation of stem and progenitor cells in the DG.


Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair.

  • Huimei Yu‎ et al.
  • Nature neuroscience‎
  • 2015‎

Contrary to the long-held belief that DNA methylation of terminally differentiated cells is permanent and essentially immutable, post-mitotic neurons exhibit extensive DNA demethylation. The cellular function of active DNA demethylation in neurons, however, remains largely unknown. Tet family proteins oxidize 5-methylcytosine to initiate active DNA demethylation through the base-excision repair (BER) pathway. We found that synaptic activity bi-directionally regulates neuronal Tet3 expression. Functionally, knockdown of Tet or inhibition of BER in hippocampal neurons elevated excitatory glutamatergic synaptic transmission, whereas overexpressing Tet3 or Tet1 catalytic domain decreased it. Furthermore, dysregulation of Tet3 signaling prevented homeostatic synaptic plasticity. Mechanistically, Tet3 dictated neuronal surface GluR1 levels. RNA-seq analyses further revealed a pivotal role of Tet3 in regulating gene expression in response to global synaptic activity changes. Thus, Tet3 serves as a synaptic activity sensor to epigenetically regulate fundamental properties and meta-plasticity of neurons via active DNA demethylation.


Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche.

  • Andrea Flesken-Nikitin‎ et al.
  • Nature‎
  • 2013‎

Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer deaths among women in the United States, but its pathogenesis is poorly understood. Some epithelial cancers are known to occur in transitional zones between two types of epithelium, whereas others have been shown to originate in epithelial tissue stem cells. The stem cell niche of the ovarian surface epithelium (OSE), which is ruptured and regenerates during ovulation, has not yet been defined unequivocally. Here we identify the hilum region of the mouse ovary, the transitional (or junction) area between the OSE, mesothelium and tubal (oviductal) epithelium, as a previously unrecognized stem cell niche of the OSE. We find that cells of the hilum OSE are cycling slowly and express stem and/or progenitor cell markers ALDH1, LGR5, LEF1, CD133 and CK6B. These cells display long-term stem cell properties ex vivo and in vivo, as shown by our serial sphere generation and long-term lineage-tracing assays. Importantly, the hilum cells show increased transformation potential after inactivation of tumour suppressor genes Trp53 and Rb1, whose pathways are altered frequently in the most aggressive and common type of human EOC, high-grade serous adenocarcinoma. Our study supports experimentally the idea that susceptibility of transitional zones to malignant transformation may be explained by the presence of stem cell niches in those areas. Identification of a stem cell niche for the OSE may have important implications for understanding EOC pathogenesis.


Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression.

  • Dmitry A Smagin‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.


Latent tri-lineage potential of adult hippocampal neural stem cells revealed by Nf1 inactivation.

  • Gerald J Sun‎ et al.
  • Nature neuroscience‎
  • 2015‎

Endogenous neural stem cells (NSCs) in the adult hippocampus are considered to be bi-potent, as they only produce neurons and astrocytes in vivo. In mouse, we found that inactivation of neurofibromin 1 (Nf1), a gene mutated in neurofibromatosis type 1, unlocked a latent oligodendrocyte lineage potential to produce all three lineages from NSCs in vivo. Our results suggest an avenue for promoting stem cell plasticity by targeting barriers of latent lineage potential.


Cul4B regulates neural progenitor cell growth.

  • Helio C Liu‎ et al.
  • BMC neuroscience‎
  • 2012‎

Cullin ubiquitin ligases are activated via the covalent modification of Cullins by the small ubiquitin-like protein nedd8 in a process called neddylation. Genetic mutations of cullin-4b (cul4b) cause a prevalent type of X-linked intellectual disability (XLID) in males, but the physiological function of Cul4B in neuronal cells remains unclear.


Progenitor cells of the testosterone-producing Leydig cells revealed.

  • Michail S Davidoff‎ et al.
  • The Journal of cell biology‎
  • 2004‎

The cells responsible for production of the male sex hormone testosterone, the Leydig cells of the testis, are post-mitotic cells with neuroendocrine characteristics. Their origin during ontogeny and regeneration processes is still a matter of debate. Here, we show that cells of testicular blood vessels, namely vascular smooth muscle cells and pericytes, are the progenitors of Leydig cells. Resembling stem cells of the nervous system, the Leydig cell progenitors are characterized by the expression of nestin. Using an in vivo model to induce and monitor the synchronized generation of a completely new Leydig cell population in adult rats, we demonstrate specific proliferation of vascular progenitors and their subsequent transdifferentiation into steroidogenic Leydig cells which, in addition, rapidly acquire neuronal and glial properties. These findings, shown to be representative also for ontogenetic Leydig cell formation and for the human testis, provide further evidence that cellular components of blood vessels can act as progenitor cells for organogenesis and repair.


Triple S-Phase Labeling of Dividing Stem Cells.

  • Oleg Podgorny‎ et al.
  • Stem cell reports‎
  • 2018‎

Marking replicating DNA with multiple labels presents the possibility of revealing new features and mechanisms of DNA synthesis and cell division; however, progression beyond double labeling has been hampered by cross-reactivity of label detection and scarcity of appropriate labels. Here, we present a method for triple S-phase labeling of the dividing cells, with a fourth label used to mark cells actively engaged in cell-cycle progression (e.g., using Ki67) or to phenotype the dividing cells or their progeny (e.g., using a GFP-expressing lineage reporter transgene). We apply this method to determine the parameters of neural stem cell division in the adult brain, to birth date up to four cohorts of dividing cells, and to reveal patterns of stem cell division in non-neural tissues.


nNOS regulates ciliated cell polarity, ciliary beat frequency, and directional flow in mouse trachea.

  • Anatoly Mikhailik‎ et al.
  • Life science alliance‎
  • 2021‎

Clearance of the airway is dependent on directional mucus flow across the mucociliary epithelium, and deficient flow is implicated in a range of human disorders. Efficient flow relies on proper polarization of the multiciliated cells and sufficient ciliary beat frequency. We show that NO, produced by nNOS in the multiciliated cells of the mouse trachea, controls both the planar polarity and the ciliary beat frequency and is thereby necessary for the generation of the robust flow. The effect of nNOS on the polarity of ciliated cells relies on its interactions with the apical networks of actin and microtubules and involves RhoA activation. The action of nNOS on the beat frequency is mediated by guanylate cyclase; both NO donors and cGMP can augment fluid flow in the trachea and rescue the deficient flow in nNOS mutants. Our results link insufficient availability of NO in ciliated cells to defects in flow and ciliary activity and may thereby explain the low levels of exhaled NO in ciliopathies.


Sustained glymphatic transport and impaired drainage to the nasal cavity observed in multiciliated cell ciliopathies with hydrocephalus.

  • Yuechuan Xue‎ et al.
  • Fluids and barriers of the CNS‎
  • 2022‎

Hydrocephalus (increased ventricular size due to CSF accumulation) is a common finding in human ciliopathies and in mouse models with genetic depletion of the multiciliated cell (MCC) cilia machinery. However, the contribution of MCC to CSF dynamics and, the mechanism by which impaired MCC function leads to hydrocephalus remains poorly understood. The aim of our study was to examine if defects in MCC ciliogenesis and cilia-generated CSF flow impact central nervous system (CNS) fluid homeostasis including glymphatic transport and solute waste drainage.


Mesoderm-derived PDGFRA+ cells regulate the emergence of hematopoietic stem cells in the dorsal aorta.

  • Vashe Chandrakanthan‎ et al.
  • Nature cell biology‎
  • 2022‎

Mouse haematopoietic stem cells (HSCs) first emerge at embryonic day 10.5 (E10.5), on the ventral surface of the dorsal aorta, by endothelial-to-haematopoietic transition. We investigated whether mesenchymal stem cells, which provide an essential niche for long-term HSCs (LT-HSCs) in the bone marrow, reside in the aorta-gonad-mesonephros and contribute to the development of the dorsal aorta and endothelial-to-haematopoietic transition. Here we show that mesoderm-derived PDGFRA+ stromal cells (Mesp1der PSCs) contribute to the haemogenic endothelium of the dorsal aorta and populate the E10.5-E11.5 aorta-gonad-mesonephros but by E13.5 were replaced by neural-crest-derived PSCs (Wnt1der PSCs). Co-aggregating non-haemogenic endothelial cells with Mesp1der PSCs but not Wnt1der PSCs resulted in activation of a haematopoietic transcriptional programme in endothelial cells and generation of LT-HSCs. Dose-dependent inhibition of PDGFRA or BMP, WNT and NOTCH signalling interrupted this reprogramming event. Together, aorta-gonad-mesonephros Mesp1der PSCs could potentially be harnessed to manufacture LT-HSCs from endothelium.


Metabolic profiling of dividing cells in live rodent brain by proton magnetic resonance spectroscopy (1HMRS) and LCModel analysis.

  • June-Hee Park‎ et al.
  • PloS one‎
  • 2014‎

Dividing cells can be detected in the live brain by positron emission tomography or optical imaging. Here we apply proton magnetic resonance spectroscopy (1HMRS) and a widely used spectral fitting algorithm to characterize the effect of increased neurogenesis after electroconvulsive shock in the live rodent brain via spectral signatures representing mobile lipids resonating at ∼1.30 ppm. In addition, we also apply the same 1HMRS methodology to metabolically profile glioblastomas with actively dividing cells growing in RCAS-PDGF mice.


Role of Tet1 and 5-hydroxymethylcytosine in cocaine action.

  • Jian Feng‎ et al.
  • Nature neuroscience‎
  • 2015‎

Ten-eleven translocation (TET) enzymes mediate the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is enriched in brain, and its ultimate DNA demethylation. However, the influence of TET and 5hmC on gene transcription in brain remains elusive. We found that ten-eleven translocation protein 1 (TET1) was downregulated in mouse nucleus accumbens (NAc), a key brain reward structure, by repeated cocaine administration, which enhanced behavioral responses to cocaine. We then identified 5hmC induction in putative enhancers and coding regions of genes that have pivotal roles in drug addiction. Such induction of 5hmC, which occurred similarly following TET1 knockdown alone, correlated with increased expression of these genes as well as with their alternative splicing in response to cocaine administration. In addition, 5hmC alterations at certain loci persisted for at least 1 month after cocaine exposure. Together, these reveal a previously unknown epigenetic mechanism of cocaine action and provide new insight into how 5hmC regulates transcription in brain in vivo.


The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model.

  • Kiyohito Murai‎ et al.
  • Nature communications‎
  • 2016‎

Dysregulated expression of miR-219, a brain-specific microRNA, has been observed in neurodevelopmental disorders, such as schizophrenia (SCZ). However, its role in normal mammalian neural stem cells (NSCs) and in SCZ pathogenesis remains unknown. We show here that the nuclear receptor TLX, an essential regulator of NSC proliferation and self-renewal, inhibits miR-219 processing. miR-219 suppresses mouse NSC proliferation downstream of TLX. Moreover, we demonstrate upregulation of miR-219 and downregulation of TLX expression in NSCs derived from SCZ patient iPSCs and DISC1-mutant isogenic iPSCs. SCZ NSCs exhibit reduced cell proliferation. Overexpression of TLX or inhibition of miR-219 action rescues the proliferative defect in SCZ NSCs. Therefore, this study uncovers an important role for TLX and miR-219 in both normal neurodevelopment and in SCZ patient iPSC-derived NSCs. Moreover, this study reveals an unexpected role for TLX in regulating microRNA processing, independent of its well-characterized role in transcriptional regulation.


A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity.

  • Peng Li‎ et al.
  • Nature neuroscience‎
  • 2013‎

It is generally believed that cerebellar granule neurons originate exclusively from granule neuron precursors (GNPs) in the external germinal layer (EGL). Here we identified a rare population of neuronal progenitors in mouse developing cerebellum that expresses Nestin. Although Nestin is widely considered a marker for multipotent stem cells, these Nestin-expressing progenitors (NEPs) are committed to the granule neuron lineage. Unlike conventional GNPs, which reside in the outer EGL and proliferate extensively, NEPs reside in the deep part of the EGL and are quiescent. Expression profiling revealed that NEPs are distinct from GNPs and, in particular, express markedly reduced levels of genes associated with DNA repair. Consistent with this, upon aberrant activation of Sonic hedgehog (Shh) signaling, NEPs exhibited more severe genomic instability and gave rise to tumors more efficiently than GNPs. These studies revealed a previously unidentified progenitor for cerebellar granule neurons and a cell of origin for medulloblastoma.


Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain.

  • Junjie U Guo‎ et al.
  • Nature neuroscience‎
  • 2014‎

DNA methylation has critical roles in the nervous system and has been traditionally considered to be restricted to CpG dinucleotides in metazoan genomes. Here we show that the single base-resolution DNA methylome from adult mouse dentate neurons consists of both CpG (~75%) and CpH (~25%) methylation (H = A/C/T). Neuronal CpH methylation is conserved in human brains, enriched in regions of low CpG density, depleted at protein-DNA interaction sites and anticorrelated with gene expression. Functionally, both methylated CpGs (mCpGs) and mCpHs can repress transcription in vitro and are recognized by methyl-CpG binding protein 2 (MeCP2) in neurons in vivo. Unlike most CpG methylation, CpH methylation is established de novo during neuronal maturation and requires DNA methyltransferase 3A (DNMT3A) for active maintenance in postmitotic neurons. These characteristics of CpH methylation suggest that a substantially expanded proportion of the neuronal genome is under cytosine methylation regulation and provide a new foundation for understanding the role of this key epigenetic modification in the nervous system.


Neurogenic hippocampal targets of deep brain stimulation.

  • Juan M Encinas‎ et al.
  • The Journal of comparative neurology‎
  • 2011‎

Deep brain stimulation (DBS) is being used to treat movement, neurological, and psychiatric disorders; recently it has been successfully applied to patients with treatment-resistant depression or in minimally conscious state. In addition to its clinical importance, DBS presents a powerful approach to target specific neural circuits and determine the functional relationship between the components of these circuits. We examined the effect of high-frequency stimulation of a crucial component of the limbic circuitry, the anterior thalamic nuclei (ATN), on the generation of new neurons in the dentate gyrus (DG) of the hippocampus, another component of the same circuitry. Adult hippocampal neurogenesis emerges as a strong correlate of antidepressant treatments; however, in most cases, the progenitor cell population targeted by a specific treatment is not known. Using reporter mouse lines designed to quantify changes in selected classes of neural progenitors, we found that high-frequency stimulation of the ATN increases symmetric divisions of a defined class of neural progenitors in the DG; this effect is later manifested as an increased number of new neurons. The affected class of neural progenitors is also affected by the antidepressant fluoxetine (Prozac) and physical exercise (running). This indicates that neurogenic stimuli of different natures can converge on the same neurogenic target in the DG. Our results also suggest that hippocampal neurogenesis may be used as a sensitive indicator of the limbic circuitry activation induced by DBS.


Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells.

  • Yuntao Duan‎ et al.
  • eLife‎
  • 2014‎

Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.


Synthetic Thymidine Analog Labeling without Misconceptions.

  • Anna Ivanova‎ et al.
  • Cells‎
  • 2022‎

Tagging proliferating cells with thymidine analogs is an indispensable research tool; however, the issue of the potential in vivo cytotoxicity of these compounds remains unresolved. Here, we address these concerns by examining the effects of BrdU and EdU on adult hippocampal neurogenesis and EdU on the perinatal somatic development of mice. We show that, in a wide range of doses, EdU and BrdU label similar numbers of cells in the dentate gyrus shortly after administration. Furthermore, whereas the administration of EdU does not affect the division and survival of neural progenitor within 48 h after injection, it does affect cell survival, as evaluated 6 weeks later. We also show that a single injection of various doses of EdU on the first postnatal day does not lead to noticeable changes in a panel of morphometric criteria within the first week; however, higher doses of EdU adversely affect the subsequent somatic maturation and brain growth of the mouse pups. Our results indicate the potential caveats in labeling the replicating DNA using thymidine analogs and suggest guidelines for applying this approach.


Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells.

  • Dengke K Ma‎ et al.
  • Molecular brain‎
  • 2009‎

Neural stem cells (NSCs) are present in the adult mammalian brain and sustain life-long adult neurogenesis in the dentate gyrus of the hippocampus. In culture, fibroblast growth factor-2 (FGF-2) is sufficient to maintain the self-renewal of adult NSCs derived from the adult rat hippocampus. The underlying signalling mechanism is not fully understood.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: