Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Progression of Behavioral and CNS Deficits in a Viable Murine Model of Chronic Neuronopathic Gaucher Disease.

  • Mei Dai‎ et al.
  • PloS one‎
  • 2016‎

To study the neuronal deficits in neuronopathic Gaucher Disease (nGD), the chronological behavioral profiles and the age of onset of brain abnormalities were characterized in a chronic nGD mouse model (9V/null). Progressive accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) in the brain of 9V/null mice were observed at as early as 6 and 3 months of age for GC and GS, respectively. Abnormal accumulation of α-synuclein was present in the 9V/null brain as detected by immunofluorescence and Western blot analysis. In a repeated open-field test, the 9V/null mice (9 months and older) displayed significantly less environmental habituation and spent more time exploring the open-field than age-matched WT group, indicating the onset of short-term spatial memory deficits. In the marble burying test, the 9V/null group had a shorter latency to initiate burying activity at 3 months of age, whereas the latency increased significantly at ≥12 months of age; 9V/null females buried significantly more marbles to completion than the WT group, suggesting an abnormal response to the instinctive behavior and an abnormal activity in non-associative anxiety-like behavior. In the conditional fear test, only the 9V/null males exhibited a significant decrease in response to contextual fear, but both genders showed less response to auditory-cued fear compared to age- and gender-matched WT at 12 months of age. These results indicate hippocampus-related emotional memory defects. Abnormal gait emerged in 9V/null mice with wider front-paw and hind-paw widths, as well as longer stride in a gender-dependent manner with different ages of onset. Significantly higher liver- and spleen-to-body weight ratios were detected in 9V/null mice with different ages of onsets. These data provide temporal evaluation of neurobehavioral dysfunctions and brain pathology in 9V/null mice that can be used for experimental designs to evaluate novel therapies for nGD.


Neuronopathic Gaucher disease in the mouse: viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits.

  • Ying Sun‎ et al.
  • Human molecular genetics‎
  • 2010‎

Gaucher disease is caused by defective acid beta-glucosidase (GCase) function. Saposin C is a lysosomal protein needed for optimal GCase activity. To test the in vivo effects of saposin C on GCase, saposin C deficient mice (C-/-) were backcrossed to point mutated GCase (V394L/V394L) mice. The resultant mice (4L;C*) began to exhibit CNS abnormalities approximately 30 days: first as hindlimb paresis, then progressive tremor and ataxia. Death occurred approximately 48 days due to neurological deficits. Axonal degeneration was evident in brain stem, spinal cord and white matter of cerebellum accompanied by increasing infiltration of the brain stem, cortex and thalamus by CD68 positive microglial cells and activation of astrocytes. Electron microscopy showed inclusion bodies in neuronal processes and degenerating cells. Accumulation of p62 and Lamp2 were prominent in the brain suggesting the impairment of autophagosome/lysosome function. This phenotype was different from either V394L/V394L or C-/- alone. Relative to V394L/V394L mice, 4L;C* mice had diminished GCase protein and activity. Marked increases (20- to 30-fold) of glucosylsphingosine (GS) and moderate elevation (1.5- to 3-fold) of glucosylceramide (GC) were in 4L;C* brains. Visceral tissues had increases of GS and GC, but no storage cells were found. Neuronal cells in thick hippocampal slices from 4L;C* mice had significantly attenuated long-term potentiation, presumably resulting from substrate accumulation. The 4L;C* mouse mimics the CNS phenotype and biochemistry of some type 3 (neuronopathic) variants of Gaucher disease and is a unique model suitable for testing pharmacological chaperone and substrate reduction therapies, and investigating the mechanisms of neuronopathic Gaucher disease.


A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease.

  • Kerry Anne McEachern‎ et al.
  • Molecular genetics and metabolism‎
  • 2007‎

An approach to treating Gaucher disease is substrate inhibition therapy which seeks to abate the aberrant lysosomal accumulation of glucosylceramide. We have identified a novel inhibitor of glucosylceramide synthase (Genz-112638) and assessed its activity in a murine model of Gaucher disease (D409V/null). Biochemical characterization of Genz-112638 showed good potency (IC(50) approximately 24nM) and specificity against the target enzyme. Mice that received drug prior to significant accumulation of substrate (10 weeks of age) showed reduced levels of glucosylceramide and number of Gaucher cells in the spleen, lung and liver when compared to age-matched control animals. Treatment of older mice that already displayed significant amounts of tissue glucosylceramide (7 months old) resulted in arrest of further accumulation of the substrate and appearance of additional Gaucher cells in affected organs. These data indicate that substrate inhibition therapy with Genz-112638 represents a viable alternate approach to enzyme therapy to treat the visceral pathology in Gaucher disease.


CNS-accessible Inhibitor of Glucosylceramide Synthase for Substrate Reduction Therapy of Neuronopathic Gaucher Disease.

  • John Marshall‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2016‎

Gaucher disease (GD) is caused by a deficiency of glucocerebrosidase and the consequent lysosomal accumulation of unmetabolized glycolipid substrates. Enzyme-replacement therapy adequately manages the visceral manifestations of nonneuronopathic type-1 Gaucher patients, but not the brain disease in neuronopathic types 2 and 3 GD. Substrate reduction therapy through inhibition of glucosylceramide synthase (GCS) has also been shown to effectively treat the visceral disease. Here, we evaluated the efficacy of a novel small molecule inhibitor of GCS with central nervous system (CNS) access (Genz-682452) to treat the brain disease. Treatment of the conduritol β epoxide-induced mouse model of neuronopathic GD with Genz-682452 reduced the accumulation of liver and brain glycolipids (>70% and >20% respectively), extent of gliosis, and severity of ataxia. In the genetic 4L;C* mouse model, Genz-682452 reduced the levels of substrate in the brain by >40%, the extent of gliosis, and paresis. Importantly, Genz-682452-treated 4L;C* mice also exhibited an ~30% increase in lifespan. Together, these data indicate that an orally available antagonist of GCS that has CNS access is effective at attenuating several of the neuropathologic and behavioral manifestations associated with mouse models of neuronopathic GD. Therefore, Genz-682452 holds promise as a potential therapeutic approach for patients with type-3 GD.


Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology.

  • Ying Sun‎ et al.
  • PloS one‎
  • 2015‎

Gaucher disease (GD) is caused by insufficient activity of acid β-glucosidase (GCase) resulting from mutations in GBA1. To understand the pathogenesis of the neuronopathic GD, induced pluripotent stem cells (iPSCs) were generated from fibroblasts isolated from three GD type 2 (GD2) and 2 unaffected (normal and GD carrier) individuals. The iPSCs were converted to neural precursor cells (NPCs) which were further differentiated into neurons. Parental GD2 fibroblasts as well as iPSCs, NPCs, and neurons had similar degrees of GCase deficiency. Lipid analyses showed increases of glucosylsphingosine and glucosylceramide in the GD2 cells. In addition, GD2 neurons showed increased α-synuclein protein compared to control neurons. Whole cell patch-clamping of the GD2 and control iPSCs-derived neurons demonstrated excitation characteristics of neurons, but intriguingly, those from GD2 exhibited consistently less negative resting membrane potentials with various degree of reduction in action potential amplitudes, sodium and potassium currents. Culture of control neurons in the presence of the GCase inhibitor (conduritol B epoxide) recapitulated these findings, providing a functional link between decreased GCase activity in GD and abnormal neuronal electrophysiological properties. To our knowledge, this study is first to report abnormal electrophysiological properties in GD2 iPSC-derived neurons that may underlie the neuropathic phenotype in Gaucher disease.


Chitinase-3-like Protein 1: A Progranulin Downstream Molecule and Potential Biomarker for Gaucher Disease.

  • Jinlong Jian‎ et al.
  • EBioMedicine‎
  • 2018‎

We recently reported that progranulin (PGRN) is a novel regulator of glucocerebrosidase and its deficiency associates with Gaucher Diseases (GD) (Jian et al., 2016a; Jian et al., 2018). To isolate the relevant downstream molecules, we performed a whole genome microarray and mass spectrometry analysis, which led to the isolation of Chitinase-3-like-1 (CHI3L1) as one of the up-regulated genes in PGRN null mice. Elevated levels of CHI3L1 were confirmed by immunoblotting and immunohistochemistry. In contrast, treatment with recombinant Pcgin, a derivative of PGRN, as well as imigluerase, significantly reduced the expressions of CHI3L1 in both PGRN null GD model and the fibroblasts from GD patients. Serum levels of CHIT1, a clinical biomarker for GD, were significantly higher in GD patients than healthy controls (51.16±2.824ng/ml vs 35.07±2.099ng/ml, p<0.001). Similar to CHIT1, serum CHI3L1 was also significantly increased in GD patients compared with healthy controls (1736±152.1pg/ml vs 684.7±68.20pg/ml, p<0.001). Whereas the PGRN level is significantly reduced in GD patients as compared to the healthy control (91.56±3.986ng/ml vs 150.6±4.501, p<0.001). Collectively, these results indicate that CHI3L1 may be a previously unrecognized biomarker for diagnosing GD and for evaluating the therapeutic effects of new GD drug(s).


Activation of p38 Mitogen-Activated Protein Kinase in Gaucher's Disease.

  • Kazuyuki Kitatani‎ et al.
  • PloS one‎
  • 2015‎

Gaucher's disease is caused by defects in acid β-glucosidase 1 (GBA1) and has been also proposed as an inflammatory disease. GBA1 cleaves glucosylceramide to form ceramide, an established bioactive lipid, and defects in GBA1 lead to aberrant accumulation in glucosylceramide and insufficient formation of ceramide. We investigated if the pro-inflammatory kinase p38 is activated in Gaucher's disease, since ceramide has been proposed to suppress p38 activation. Three Gaucher's disease mouse models were employed, and p38 was found to be activated in lung and liver tissues of all Gaucher's disease mice. Most interestingly, neuronopathic Gaucher's disease type mice, but not non-neuronopathic ones, displayed significant activation of p38 and up-regulation of p38-inducible proinflammatory cytokines in brain tissues. In addition, all type of Gaucher's disease mice also showed increases in serum IL-6. As cellular signalling is believed to represent an in vivo inflammatory phenotype in Gaucher's disease, activation of p38 and possibly its-associated formation of proinflammatory cytokines were assessed in fibroblasts established from neuronopathic Gaucher's disease mice. In mouse Gaucher's disease cells, p38 activation and IL-6 formation by TNF-α treatment were enhanced as compared to those of wild type. Furthermore, human fibroblasts from Gaucher's disease patients also displayed increases in p38 activation and IL-6 formation as comparison to healthy counterpart. These results raise the potential that proinflammatory responses such as p38 activation and IL-6 formation are augmented in Gaucher's disease.


Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies.

  • Joseph R Mazzulli‎ et al.
  • Cell‎
  • 2011‎

Parkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies.


Global gene expression profile progression in Gaucher disease mouse models.

  • You-Hai Xu‎ et al.
  • BMC genomics‎
  • 2011‎

Gaucher disease is caused by defective glucocerebrosidase activity and the consequent accumulation of glucosylceramide. The pathogenic pathways resulting from lipid laden macrophages (Gaucher cells) in visceral organs and their abnormal functions are obscure.


Gaucher disease: transcriptome analyses using microarray or mRNA sequencing in a Gba1 mutant mouse model treated with velaglucerase alfa or imiglucerase.

  • Nupur Dasgupta‎ et al.
  • PloS one‎
  • 2013‎

Gaucher disease type 1, an inherited lysosomal storage disorder, is caused by mutations in GBA1 leading to defective glucocerebrosidase (GCase) function and consequent excess accumulation of glucosylceramide/glucosylsphingosine in visceral organs. Enzyme replacement therapy (ERT) with the biosimilars, imiglucerase (imig) or velaglucerase alfa (vela) improves/reverses the visceral disease. Comparative transcriptomic effects (microarray and mRNA-Seq) of no ERT and ERT (imig or vela) were done with liver, lung, and spleen from mice having Gba1 mutant alleles, termed D409V/null. Disease-related molecular effects, dynamic ranges, and sensitivities were compared between mRNA-Seq and microarrays and their respective analytic tools, i.e. Mixed Model ANOVA (microarray), and DESeq and edgeR (mRNA-Seq). While similar gene expression patterns were observed with both platforms, mRNA-Seq identified more differentially expressed genes (DEGs) (∼3-fold) than the microarrays. Among the three analytic tools, DESeq identified the maximum number of DEGs for all tissues and treatments. DESeq and edgeR comparisons revealed differences in DEGs identified. In 9V/null liver, spleen and lung, post-therapy transcriptomes approximated WT, were partially reverted, and had little change, respectively, and were concordant with the corresponding histological and biochemical findings. DEG overlaps were only 8-20% between mRNA-Seq and microarray, but the biological pathways were similar. Cell growth and proliferation, cell cycle, heme metabolism, and mitochondrial dysfunction were most altered with the Gaucher disease process. Imig and vela differentially affected specific disease pathways. Differential molecular responses were observed in direct transcriptome comparisons from imig- and vela-treated tissues. These results provide cross-validation for the mRNA-Seq and microarray platforms, and show differences between the molecular effects of two highly structurally similar ERT biopharmaceuticals.


Extracellular Lipids Accumulate in Human Carotid Arteries as Distinct Three-Dimensional Structures and Have Proinflammatory Properties.

  • Satu Lehti‎ et al.
  • The American journal of pathology‎
  • 2018‎

Lipid accumulation is a key characteristic of advancing atherosclerotic lesions. Herein, we analyzed the ultrastructure of the accumulated lipids in endarterectomized human carotid atherosclerotic plaques using three-dimensional (3D) electron microscopy, a method never used in this context before. 3D electron microscopy revealed intracellular lipid droplets and extracellular lipoprotein particles. Most of the particles were aggregated, and some connected to needle-shaped or sheet-like cholesterol crystals. Proteomic analysis of isolated extracellular lipoprotein particles revealed that apolipoprotein B is their main protein component, indicating their origin from low-density lipoprotein, intermediate-density lipoprotein, very-low-density lipoprotein, lipoprotein (a), or chylomicron remnants. The particles also contained small exchangeable apolipoproteins, complement components, and immunoglobulins. Lipidomic analysis revealed differences between plasma lipoproteins and the particles, thereby indicating involvement of lipolytic enzymes in their generation. Incubation of human monocyte-derived macrophages with the isolated extracellular lipoprotein particles or with plasma lipoproteins that had been lipolytically modified in vitro induced intracellular lipid accumulation and triggered inflammasome activation in them. Taken together, extracellular lipids accumulate in human carotid plaques as distinct 3D structures that include aggregated and fused lipoprotein particles and cholesterol crystals. The particles originate from plasma lipoproteins, show signs of lipolytic modifications, and associate with cholesterol crystals. By inducing intracellular cholesterol accumulation (ie, foam cell formation) and inflammasome activation, the extracellular lipoprotein particles may actively enhance atherogenesis.


Multiple interactions between the alpha 2C- and beta1-adrenergic receptors influence heart failure survival.

  • Sharon L R Kardia‎ et al.
  • BMC medical genetics‎
  • 2008‎

Persistent stimulation of cardiac beta1-adrenergic receptors by endogenous norepinephrine promotes heart failure progression. Polymorphisms of this gene are known to alter receptor function or expression, as are polymorphisms of the alpha 2C-adrenergic receptor, which regulates norepinephrine release from cardiac presynaptic nerves. The purpose of this study was to investigate possible synergistic effects of polymorphisms of these two intronless genes (ADRB1 and ADRA2C, respectively) on the risk of death/transplant in heart failure patients.


Combination of acid β-glucosidase mutation and Saposin C deficiency in mice reveals Gba1 mutation dependent and tissue-specific disease phenotype.

  • Benjamin Liou‎ et al.
  • Scientific reports‎
  • 2019‎

Gaucher disease is caused by mutations in GBA1 encoding acid β-glucosidase (GCase). Saposin C enhances GCase activity and protects GCase from intracellular proteolysis. Structure simulations indicated that the mutant GCases, N370S (0 S), V394L (4L) and D409V(9V)/H(9H), had altered function. To investigate the in vivo function of Gba1 mutants, mouse models were generated by backcrossing the above homozygous mutant GCase mice into Saposin C deficient (C*) mice. Without saposin C, the mutant GCase activities in the resultant mouse tissues were reduced by ~50% compared with those in the presence of Saposin C. In contrast to 9H and 4L mice that have normal histology and life span, the 9H;C* and 4L;C* mice had shorter life spans. 9H;C* mice developed significant visceral glucosylceramide (GC) and glucosylsphingosine (GS) accumulation (GC»GS) and storage macrophages, but lesser GC in the brain, compared to 4L;C* mice that presents with a severe neuronopathic phenotype and accumulated GC and GS primarily in the brain. Unlike 9V mice that developed normally for over a year, 9V;C* pups had a lethal skin defect as did 0S;C* mice resembled that of 0S mice. These variant Gaucher disease mouse models presented a mutation specific phenotype and underscored the in vivo role of Saposin C in the modulation of Gaucher disease.


Systemic enzyme delivery by blood-brain barrier-penetrating SapC-DOPS nanovesicles for treatment of neuronopathic Gaucher disease.

  • Ying Sun‎ et al.
  • EBioMedicine‎
  • 2020‎

Enzyme replacement therapy (ERT) can positively affect the visceral manifestations of lysosomal storage diseases (LSDs). However, the exclusion of the intravenous ERT agents from the central nervous system (CNS) prevents direct therapeutic effects.


Gaucher disease: chemotactic factors and immunological cell invasion in a mouse model.

  • Manoj Kumar Pandey‎ et al.
  • Molecular genetics and metabolism‎
  • 2014‎

Gaucher disease results from mutations in GBA1 that cause functional disruption of the encoded lysosomal enzyme, acid β-glucosidase. The consequent excess accumulation of glucosylceramide and glucosylsphingosine in lysosomes is central to the disease pathogenesis with classical involvement of macrophage (Mфs) lineage cells of visceral organs, bone, or brain. Several studies have implicated the increased secretion of chemokines and infiltration of a variety of immunological cells into tissues of Gaucher disease patients. Trafficking of immunological cells to the sites of inflammation requires the presence of chemokines. Although increases of different immunological cells and several chemokines are present in Gaucher disease, the specific chemoattractants that cause the increased influx of immunological cells are not fully defined. Here, increased levels of I-309, MCP-5, CXCL-2, CXCL-9, CXCL-10, CXCL-11, CXCL-13, and their corresponding leukocytes, i.e., MOs (monocytes), Mфs, dendritic cells (DCs), polymorphonuclear neutrophils (PMNs), and T, and B cells were identified in the circulation of mice with Gba1 mutations (D409V/null). Sera from D409V/null mice contained chemoattractants for a variety of immunological cells as shown by ex vivo chemotaxis studies and by flow cytometry. Enhanced chemotaxis towards 9V/null sera was found for 9V/null lung-, spleen-, liver-, and bone marrow-derived Mфs (CD11b(+) F480(+)), PMNs (Gr1(high) CD11b(+)), DCs (CD11c(+) CD11b(+)), T lymphocytes (CD3(+) TCRB(+)), and B lymphocytes (B220(+) CD19(+)). These data support these chemotactic factors as causative to increased tissue infiltration of leukocytes in Gaucher disease.


Immunological cell type characterization and Th1-Th17 cytokine production in a mouse model of Gaucher disease.

  • Manoj Kumar Pandey‎ et al.
  • Molecular genetics and metabolism‎
  • 2012‎

Gaucher disease is a lysosomal storage disease resulting from insufficient acid β-glucosidase (glucocerebrosidase, GCase, EC 4.2.1.25) activity and the resultant accumulation of glucosylceramide. Macrophage (Mϕ) lineage cells are thought to be the major disease effectors because of their secretion of numerous cytokines and chemokines that influence other poorly defined immunological cell populations. Increases in several such populations were identified in a Gba1 mouse model (D409V/null; 9V/null) of Gaucher disease including antigen presenting cells (APCs), i.e., Mϕ, dendritic cells (DCs), neutrophils (PMNs), and CD4(+) T cells. FACS analyses showed increases in these cell types in 9V/null liver, spleen lung, and bone marrow. T-cells or APCs enhanced activations were evident by positivity of CD40L, CD69, as well as CD40, CD80, CD86, and MHCII on the respective cells. Mϕ, and, unexpectedly, DCs, PMNs, and T cells, from 9V/null mice showed excess glucosylceramides as potential bases for activation of APCs and T cells to induce Th1 (IFNγ, IL12, TNFα,) and Th17 (IL17A/F) cytokine production. These data imply that excess glucosylceramides in these cells are pivotal for activation of APCs and T cell induction of Th1 and Th17 responses and PMN recruitment in multiple organs of this model of Gaucher disease.


Association Between Progranulin and Gaucher Disease.

  • Jinlong Jian‎ et al.
  • EBioMedicine‎
  • 2016‎

Gaucher disease (GD) is a genetic disease caused by mutations in the GBA1 gene which result in reduced enzymatic activity of β-glucocerebrosidase (GCase). This study identified the progranulin (PGRN) gene (GRN) as another gene associated with GD.


Isofagomine in vivo effects in a neuronopathic Gaucher disease mouse.

  • Ying Sun‎ et al.
  • PloS one‎
  • 2011‎

The pharmacological chaperone, isofagomine (IFG), enhances acid β-glucosidase (GCase) function by altering folding, trafficking, and activity in wild-type and Gaucher disease fibroblasts. The in vivo effects of IFG on GCase activity, its substrate levels, and phenotype were evaluated using a neuronopathic Gaucher disease mouse model, 4L;C* (V394L/V394L + saposin C-/-) that has CNS accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) as well as progressive neurological deterioration. IFG administration to 4L;C* mice at 20 or 600 mg/kg/day resulted in life span extensions of 10 or 20 days, respectively, and increases in GCase activity and protein levels in the brain and visceral tissues. Cerebral cortical GC and GS levels showed no significant reductions with IFG treatment. Increases of GC or GS levels were detected in the visceral tissues of IFG treated (600 mg/kg/day) mice. The attenuations of brain proinflammatory responses in the treated mice were evidenced by reductions in astrogliosis and microglial cell activation, and decreased p38 phosphorylation and TNFα levels. Terminally, axonal degeneration was present in the brain and spinal cord from untreated and treated 4L;C* mice. These data demonstrate that IFG exerts in vivo effects by enhancing V394L GCase protein and activity levels, and in mediating suppression of proinflammation, which led to delayed onset of neurological disease and extension of the life span of 4L;C* mice. However, this was not correlated with a reduction in the accumulation of lipid substrates.


Substrate compositional variation with tissue/region and Gba1 mutations in mouse models--implications for Gaucher disease.

  • Ying Sun‎ et al.
  • PloS one‎
  • 2013‎

Gaucher disease results from GBA1 mutations that lead to defective acid β-glucosidase (GCase) mediated cleavage of glucosylceramide (GC) and glucosylsphingosine as well as heterogeneous manifestations in the viscera and CNS. The mutation, tissue, and age-dependent accumulations of different GC species were characterized in mice with Gba1 missense mutations alone or in combination with isolated saposin C deficiency (C*). Gba1 heteroallelism for D409V and null alleles (9V/null) led to GC excesses primarily in the visceral tissues with preferential accumulations of lung GC24∶0, but not in liver, spleen, or brain. Age-dependent increases of different GC species were observed. The combined saposin C deficiency (C*) with V394L homozygosity (4L;C*) showed major GC18:0 degradation defects in the brain, whereas the analogous mice with D409H homozygosity and C* (9H;C*) led to all GC species accumulating in visceral tissues. Glucosylsphingosine was poorly degraded in brain by V394L and D409H GCases and in visceral tissues by D409V GCase. The neonatal lethal N370S/N370S genotype had insignificant substrate accumulations in any tissue. These results demonstrate age, organ, and mutation-specific quantitative differences in GC species and glucosylsphingosine accumulations that can have influence in the tissue/regional expression of Gaucher disease phenotypes.


Specific saposin C deficiency: CNS impairment and acid beta-glucosidase effects in the mouse.

  • Ying Sun‎ et al.
  • Human molecular genetics‎
  • 2010‎

Saposins A, B, C and D are derived from a common precursor, prosaposin (psap). The few patients with saposin C deficiency develop a Gaucher disease-like central nervous system (CNS) phenotype attributed to diminished glucosylceramide (GC) cleavage activity by acid beta-glucosidase (GCase). The in vivo effects of saposin C were examined by creating mice with selective absence of saposin C (C-/-) using a knock-in point mutation (cysteine-to-proline) in exon 11 of the psap gene. In C-/- mice, prosaposin and saposins A, B and D proteins were present at near wild-type levels, but the saposin C protein was absent. By 1 year, the C-/- mice exhibited weakness of the hind limbs and progressive ataxia. Decreased neuromotor activity and impaired hippocampal long-term potentiation were evident. Foamy storage cells were observed in dorsal root ganglion and there was progressive loss of cerebellar Purkinje cells and atrophy of cerebellar granule cells. Ultrastructural analyses revealed inclusions in axonal processes in the spinal cord, sciatic nerve and brain, but no excess of multivesicular bodies. Activated microglial cells and astrocytes were present in thalamus, brain stem, cerebellum and spinal cord, indicating regional pro-inflammatory responses. No storage cells were found in visceral organs of these mice. The absence of saposin C led to moderate increases in GC and lactosylceramide (LacCer) and their deacylated analogues. These results support the view that saposin C has multiple roles in glycosphingolipid (GSL) catabolism as well as a prominent function in CNS and axonal integrity independent of its role as an optimizer/stabilizer of GCase.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: